The ¹²C+¹²C key reaction for astrophysics applications

Frank Strieder Ruhr-Universität Bochum

THERRAA - LIBRA Workshop on "Thermonuclear Reaction Rates for Astrophysics Applications" Athens, Greece 24.11.2011

Outline of this Presentation

The ¹²C+¹²C key reaction for astrophysics applications

- Astrophysical Motivation Carbon Burning
- The Carbon Fusion ${}^{12}C$ + ${}^{12}C$ recent experiments
 - \rightarrow experimental problems and difficulties
 - \rightarrow extrapolation
 - \rightarrow robustness of data
- Recommendations for future experments

Motivation

Nucleosynthesis → Stellar Evolution

Astrophysical Motivation ¹²C + ¹²C fusion

Results of current Stellar Models suggest:

$M_{up} \equiv$ minimum mass for carbon ignition

- Stars with M < M_{up} (presently 8M_{solar}) These stars shed their H-rich envelopes during He burning (AGB phase) and end as
 - → Impact on the Nucleosynthesis and the chemical evolution of the Universe

→ the expected observational rates for Supernovae and Novae depend on the fundamental mass limits M_{up} and M'_{up} and, thus on the ¹²C+¹²C reaction rates

• Stars with M > M'_{up}

Ignition of central <u>carbon burning</u> followed by Ne, O, and Si burning. The subsequent evolution proceeds in most cases to a core collapse Supernova. → These stars make the bulk of newly processed matter that is returned to the ISM.

Carbon Burning in Stars

RUB

Wide range of possible heavy ion reactions – at low energies most important:

¹²C + ¹²C (lowest Coulomb Barrier)

¹²C(¹²C,p)²³Na Q = 2.240 MeV ¹²C(¹²C, α)²⁰Ne Q = 4.617 MeV ¹²C(¹²C, α)²³Mg Q = -2.598 MeV

 $E_{G} = 2.42 \times T_{9}^{2/3} \pm 0.75 \times T_{9}^{5/6}$

The ¹²C+¹²C fusion reactions produce light elements; their abundances stay relatively low and reflect the rate ratio of the reactions destroying them and of ¹²C+¹²C.

Nucleosynthese in surrounding burning shell

Level Scheme - γ-ray spectroscopy

6

Experimental Setup - γ *-ray spectroscopy*

Experimental Results - γ-ray spectroscopy

Spillane et al., PRL 98, 122501 (2007)

Experimental Results - γ-ray spectroscopy

RUB

very important feature of this experiment: low hydrogen content in target

comparison of γ -ray spectra with earlier experiments

Baron-Palos et al., NPA 779 (2006) 318

Experimental Results - γ -ray spectroscopy

Experimental Results – total S-factor

natural next step

Level Scheme - particle spectroscopy

Experimental Setup - particle spectroscopy RUB

preliminar tests wth single detector:

- → beam induced background too high at lower energies
- $\rightarrow \Delta E$ -E particle detector telescope

Experimental Setup - particle spectroscopy RUB

Completely separate detector volume from target using foils and sheet metal \rightarrow Target sputtering causing large leak currents on silicon detectors

Experimental Results - particle spectroscopy RUB

Background Considerations

disadvantage of particle spectroscopy:

very poor energy resolution from kinematics as well as experimental technique

 \rightarrow background discrimination not as "easy" as for γ -ray spectroscopy

test with various beams and targets (⁷Li, ⁹Be, ^{10,11}B, ¹³C) no impact observed so far

but:

water, i.e. deuterium, remains as a huge problem

Background Considerations

in γ -ray spectroscopy measurements main source of background

${}^{12}C(d, \mathbf{p}\gamma){}^{13}C \text{ or } d({}^{12}C, \mathbf{p}\gamma){}^{13}C$

 \rightarrow Proton from this contaminat reaction too low in energy

but:

 \rightarrow Elastic scattering under forward anlges d(¹²C,d)¹²C

 \rightarrow followed by ¹²C(d,**p** γ)¹³C, but then at <u>higher</u> CM energy

RUHR-UNIVERSITÄT BOCHUM NUCLEAR ASTROPHYSICS

Background Considerations

∆E [cha

20

¹²C beam

deuterium (water) contamination

graphit target

RUB

E = 1.6 MeV

Background Considerations

in *γ*-ray spectroscopy measurements main source of background

 $^{12}C(d, \mathbf{p}\gamma)^{13}C \text{ or } d(^{12}C, \mathbf{p}\gamma)^{13}C$

 \rightarrow Proton from this contaminat reaction too low in energy

but:

 \rightarrow Elastic scattering under forward anlges d(¹²C,d)¹²C

 \rightarrow followed by ¹²C(d,p_γ)¹³C, but then at higher CM energy

 \rightarrow higher proton energy, in the region of ${}^{12}C({}^{12}C,p){}^{23}Na$ (!!!!)

 \rightarrow checked with ¹⁶O beam (advantage: contamination can be monitored)

Background Considerations

in γ -ray spectroscopy main source of background ${}^{12}C(d,p\gamma){}^{13}C$ or $d({}^{12}C,p\gamma){}^{13}C$

Improvements:

- → all vacuum components in CF on vacuum level of 10⁻⁷ mbar a build up of water is likely, at 10⁻⁹ mbar sputtering is fast than the build up
- → "radon" box: experimental setup closed in a box flushed with argon suppression of hydrogen and nitrogen (water to a lesser extend)
- \rightarrow HOPG targets: graphite almost free of hydrogen and oxygen
- \rightarrow cold trap with liquid nitrogen (suppression of water)

Impact on the α -channel: hydrogen suppression is probably a problem too due to the gas in Bragg detectors, hydrogen in the rest gas cannot be avoided, but most likely there is no similar contamination in the α -channel. However, you never know before you have done the experiment at such low-level

Preliminary New Results (very recent)

Courtesy Jim Zickefoose

Preliminary results - particle spectroscopy RUB

comparison of the two methods

comparison of the two methods

comparison of the two methods

		1aoie 20.10. h	adiative decays in 10	10
$E_{\rm i}~({\rm MeV})$	$J_{\mathbf{i}}^{\pi}; T$	$E_{\rm f}~({\rm MeV})$	Branch (%)	
1.63	$2^+; 0$	0	100	
4.25	$4^+; 0$	1.63	≈ 100	
4.97	$2^{-}; 0$	0	0.6 ± 0.2	
		1.63	99.4 ± 0.2	
5.62	$3^{-}; 0$	0	7.6 ± 1.0	
		1.63	87.6 ± 1.0	1
		4.97	4.8 ± 1.6	
5.79	$1^{-}; 0$	0	18 ± 5	Т
		1.63	82 ± 5	
6.73	0+;0	0		Т
		1.63	100	
7.00	$4^{-}; 0$	1.63	0.5 ± 0.2	
		4.25	13	
		4.97	64.5	
		5.62	22	
7.16	$3^{-}; 0$	4.25	60 ± 5	
		5.79	40 : D.R. Tille	v ^{a,}
	S.	R		

Table 20.18: Radiative decays in 20Na

re-analysis of the existing γ -ray spectra from Spillane et al. in progress

transitions which are visible in the spectrum

 $441 \rightarrow 0$ $2390 \rightarrow 0$ $2640 \rightarrow 0$ $2980 \rightarrow 0$

 \rightarrow new data with larger E_{γ} range needed

Summary of Presentation

The ¹²C+¹²C key reaction for astrophysics applications

- astrophysical implications: stellar evolution, supernovae
- difficult measurement due to beam induced background
- low energy limit hás been moved downward
- problem of extrapolation might be even more severe
- solution need both approaches, i.e. γ -ray and particle spectroscopy
- perspectives for measurements in underground lab,
 - \rightarrow need larger accelerator

RUHR-UNIVERSITÄT BOCHUM NUCLEAR ASTROPHYSICS

Extra slides

Experimental Results - γ-ray spectroscopy

Thick-Target Yield curve

new resonance $E_R = 2.14 \text{ MeV}$ $\omega \gamma = 0.11 \pm 0.02 \text{ meV}$ (α channel)

reaction rate enhanced by factor 5