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Outline of this Presentation 

The 12C+12C key reaction for astrophysics applications  
 
• Astrophysical Motivation – Carbon Burning 
 
• The Carbon Fusion - 12C + 12C - recent experiments 
   → experimental problems and difficulties 
   → extrapolation  
   → robustness of data 
 
• Recommendations for future experments 
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Motivation 

Nucleosynthesis → Stellar Evolution 



4 

NUCLEAR ASTROPHYSICS 

• Stars with M < Mup (presently 8Msolar) 
These stars shed their H-rich envelopes during He burning (AGB phase) and end as 
CO White Dwarfs. 
→ Most of the matter returned to the ISM is unprocessed. 
→ Progenitors for Novae and Type Ia Supernovae (in binary systems) 
 

• Stars with Mup < M < M‘up 
These stars will ignite off-center carbon burning under degenerated conditions and 
after a super AGB phase end as ONeMg White Dwarf. 

 

• Stars with M > M‘up 
 Ignition of central carbon burning followed by Ne, O, and Si burning. The 

subsequent evolution proceeds in most cases to a core collapse Supernova. 
→ These stars make the bulk of newly processed matter that is returned to the ISM. 

Astrophysical Motivation 12C + 12C fusion 
Results of current Stellar Models suggest: 

Mup ≡ minimum mass for carbon ignition 

→ Impact on the Nucleosynthesis and the chemical evolution of  
    the Universe 
 
→ the expected observational rates for Supernovae and Novae 
    depend on the fundamental mass limits Mup and M‘up 

      and, thus on the 12C+12C reaction rates 
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Wide range of possible heavy ion reactions – at low energies most important:  
12C + 12C  (lowest Coulomb Barrier) 
 

12C(12C,p)23Na Q = 2.240 MeV 
12C(12C,α)20Ne   Q = 4.617 MeV 
12C(12C,n)23Mg   Q = -2.598 MeV 
 

EG = 2.42×T9
2/3 ± 0.75×T9

5/6 
 
 

 

    The 12C+12C fusion reactions produce 
    light elements; their abundances stay 
    relatively low and reflect the rate ratio 
    of the reactions destroying them and 
    of 12C+12C. 

Carbon Burning in Stars 

Nucleosynthese in surrounding burning shell 
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Level Scheme - γ-ray spectroscopy 
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simple setup: - 1 germanium detector (115%) at 0° 
  - lead shielding (15 cm) 
  - active shielding (cosmic muons) 
  - thick Graphite target (1 mm) – high stability, clean 
  - target heated with beam (about 700° C) 
       → no hydrogen/deuterium contaminations 
  - differential method – energy steps 12.5 and 25 keV 
  - observation of  Eγ = 440 keV (p channel) and 
       Eγ = 1634 keV (α channel) 
  - covered energy range Ecm = 2.1 – 4.7 MeV 

2 cm 

Ge detector 
εγ = 2 % (3.6%) 

12C beam 
Graphite 

40 pµA 

γ 

Experimental Setup - γ-ray spectroscopy 
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Spillane et al., PRL 98, 122501 (2007) 

Experimental Results - γ-ray spectroscopy 
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Baron-Palos et al., NPA 779 (2006) 318 

Experimental Results - γ-ray spectroscopy 

very important feature of this experiment:  low hydrogen content in target 

comparison of γ-ray spectra with earlier experiments 
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Experimental Results - γ-ray spectroscopy 

Advantages of this approach: 
 - very easy 
 - „clear“ signature of γ-lines 
 
Disadvantage: 
 - low efficiency 
 - unknown angular distribution 
 - not sensitive to ground state transitions 
  → could make 50% of cross section 
  → no measurement of σtot  
  → need estimate from old measurement  
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Experimental Results – total S-factor 

importance of resonances 
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natural next step 

particle spectroscopy of the 12C + 12C fusion reactions 

experiment (similar setup) moved from Bochum to Caserta 

better support, more beam time available 
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Level Scheme - particle spectroscopy 
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Experimental Setup - particle spectroscopy 

preliminar tests wth single detector: 
 

→  beam induced background 
      too high at lower energies 
 

→  ∆E-E particle detector telescope 

Ω=0.19 sr 
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Experimental Setup - particle spectroscopy 

Completely separate detector volume from target using foils and sheet metal 
       → Target sputtering causing large leak currents on silicon detectors 
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Experimental Results - particle spectroscopy 

first phase: 
- only p channel is detected 
- 12C(12C,p0,1)23Na 
- ∆E detector too thick 
- α particles are stopped 
- background tests 
 

second phase: 
-12C(12C,α0,1)20Ne with 
  Bragg curve 
  detector  
 
 

background arising from 
hydrogen contaminations 

E =3.5 MeV 
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Background Considerations 

disadvantage of particle spectroscopy: 
   very poor energy resolution 
   from kinematics as well as experimental technique 
 

→  background discrimination not as „easy“ as for γ-ray spectroscopy 
 

→ test with various beams and targets (7Li, 9Be, 10,11B, 13C) 
  no impact observed so far 
 
but:  
 water, i.e. deuterium, remains as a huge problem 
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Background Considerations 

in γ-ray spectroscopy measurements main source of background 
 
  12C(d,pγ)13C or d(12C,pγ)13C  
 

→ Proton from this contaminat reaction too low in energy 
 
but: 

→ Elastic scattering under forward anlges d(12C,d)12C 
 

→ followed by 12C(d,pγ)13C, but then at higher CM energy 
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deuterium (water) 
contamination 

12C beam 

graphit target 

Background Considerations 
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Background Considerations 

in γ-ray spectroscopy measurements main source of background 
 
  12C(d,pγ)13C or d(12C,pγ)13C  
 

→ Proton from this contaminat reaction too low in energy 
 
but: 

→ Elastic scattering under forward anlges d(12C,d)12C 
 

→ followed by 12C(d,pγ)13C, but then at higher CM energy 
 

→ higher proton energy, in the region of 12C(12C,p)23Na (!!!!) 
 

→ checked with 16O beam (advantage: contamination can be monitored) 
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Background Considerations 

in γ-ray spectroscopy main source of background   12C(d,pγ)13C or d(12C,pγ)13C  
 
Improvements: 

→ all vacuum components in CF – on vacuum level of 10-7 mbar a build 
         up of water is likely, at 10-9 mbar sputtering is fast than the build up 

→ „radon“ box: experimental setup closed in a box flushed with argon 
         suppression of hydrogen and nitrogen (water to a lesser extend) 

→ HOPG targets: graphite almost free of hydrogen and oxygen 

→ cold trap with liquid nitrogen (suppression of water) 
 
Impact on the α-channel: hydrogen suppression is probably a problem too 
due to the gas in Bragg detectors, hydrogen in the rest gas cannot be avoided, 
but most likely there is no similar contamination in the α-channel. 
However, you never know before you have done the experiment at such low-level 
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Preliminary New Results (very recent) 

Courtesy Jim Zickefoose 

Influence of 12C(d,p)13C 
resonances 

hydrogen “free” 
target 

Gamow window 
a lot need to be done!! 
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Preliminary results - particle spectroscopy 

Thesis Jim Zickefoose 
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γ-ray spectroscopy 

comparison of the two methods 

particle spectroscopy 
at low energies (below E ≤ 2.7 MeV) 

24Mg 

2.7 MeV 

observed 

unobserved 
24Mg 

indirectly observed 
no tr → 0 reported 

unobserved 

observed  σ440 ≡ 0.48×σp 
                      (Becker et al., 1981) 

γ σp0+p1 ≈ 0.3×σp 
 

(Becker et al., 1981) 

≈ 0.3 

Becker et al., 1981 

P. Endt, Nucl. Phys. A, 1991 
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γ-ray spectroscopy 

comparison of the two methods 

particle spectroscopy 
at low energies (below E ≤ 2.7 MeV) 

α 

24Mg 

2.7 MeV 

observed 

unobserved 
24Mg indirectly observed 

no tr → 0 reported 

unobserved 

observed  σ1634 ≡ 0.55×σα 
                      (Becker et al., 1981) 

γ 

σα0+α1 ≈ 0.3×σα 
(Becker et al., 1981) 
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comparison of the two methods 
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re-analysis of the existing γ-ray spectra from Spillane et al. in progress 
 
transitions which are visible in the spectrum 
441 → 0 
2390 → 0 
2640 → 0 
2980 → 0 

→ new data  
with larger Eγ range needed 
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Summary of Presentation 

The 12C+12C key reaction for astrophysics applications 
 

• astrophysical implications: stellar evolution, supernovae 
 

• difficult measurement due to beam induced background 
 

• low energy limit hás been moved downward 
 

• problem of extrapolation might be even more severe 
 

• solution need both approaches, i.e. γ-ray and particle spectroscopy 
 

• perspectives for measurements in underground lab,  
   → need larger accelerator 
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Extra slides 
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Thick-Target Yield curve 

new resonance ER = 2.14 MeV 
ωγ = 0.11 ± 0.02 meV (α channel) 
 
reaction rate enhanced by factor 5 

α channel 

Experimental Results - γ-ray spectroscopy 
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