Workshop on Thermonuclear Reaction Rates for Astrophysics Applications, Athens

p-Process Nucleosynthesis in Type Ia Supernova

Accretion disk

companion

CO white dwarf

Nobuyuki Iwamoto

1

p-Nuclei

History of p-Process Studies

- ► H-rich envelope in SN explosions
 - Audouze & Truran (1975) proton captures
- Hydrostatic oxygen burning layer
 - Arnould (1976)
- Core collapse SN (O/Ne layer Explosive O burning layer)
 - Woosley & Howard (1978) analytic explosion model
 - Rayet et al. (1990) analytic explosion model
 - Prantzos et al. (1990) Shigeyama (1988) explosion model
 - Rayet et al. (1995) Hashimoto (1993) explosion model
- ► Type Ia SN
 - Howard et al. (1991); Howard & Meyer (1992); Travaglio et al. (2011, 2D hydro. simulation) - Chandrasekhar-mass C/O WDs with enhanced seeds by s-process
 - Goriely et al. (2001) He accreting sub-Chandrasekhar-mass WDs
- Neutrino-driven winds, etc.
 - Wanajo et al. (2011)

Drawbacks in Probable Sites

O/Ne layer of core-collapse SNe

- ① Underproduction of some p-nuclei of e.g. ^{92,94}Mo, ^{96,98}Ru, ¹¹³In, ¹¹⁵Sn and ¹³⁸La
- 2 Ejected yield of p-nuclei relative to those of oxygen is ¼.
 - Oxygen: main product of CCSN → same level of enhancements are needed

Type Ia SNe

 Seed abundanc∈ in SNe II. → no accreting WD.

Traditional Values for p-Process Results

Mean overproduction factor

 $< F_i >= \frac{1}{M_{PDI}} \int_{PPL} \frac{X_i}{X_i} dM_r$

X_i mass fraction at each mass shell $X_i/X_{i,\odot}$... overproduction factor for each nucleus M_{PPI} total mass of the p-process layer (PPL)

<F_i> : degree of enhancements in PPL

overproduction factor averaged over 35 p-nuclei

 $F_0 = \sum_i < F_i > /35$

 F_0 : averaged enhancement of p-nuclei in PPL

All of the p-nuclei $\rightarrow \langle F_i \rangle / F_0 = 1$. ♦ The distribution is the same as solar.

p-Process in W7 Model

Carbon Deflagration Model for Type Ia Supernova (W7; Nomoto et al. 1984)

Peak density $(1 \sim 3 \times 10^7 \text{g/cc})$ higher than SNII by ~ 100 $\dot{Y}_i = \sum_i N_j^i \lambda_j Y_j + \sum_{i,k} N_{j,k}^i \rho N_A < j, k > Y_j Y_k + \sum_{i,k,l} N_{j,k,l}^i \rho^2 N_A^2 < j, k, l > Y_j Y_k Y_l.$

Abundance Distribution of Seeds

Mass Number

Nuclear Flow in W7

Neutron Number

Neutron Number

Neutron Number

Result of p-process in W7

Some underproductions are left with this set of assumptions!
→ other sites for the production needed

Nuclear Flow and Production of p-nuclei

Nuclear Flow and Production of ¹²⁶Xe

Nuclear Flow and Production of ⁷⁴Se

Nuclear Flow and Production of ⁹²Mo

Nuclear Flow and Production of ⁹⁴Mo

Nuclear Flow and Production of ⁹⁶Ru

Nuclear Flow and Production of ⁹⁸Ru

Nuclear Flow and Production of ¹¹⁵Sn

Nuclear Flow and Production of ¹²⁰Te

Nuclear Flow and Production of ¹⁴⁴Sm

Nuclear Flow and Production of ¹⁸⁴Os

Peak Temperatures of Trajectories

Summary of p-process (1)

Summary of p-process (2)

Summary of p-process ③

Peak T/10⁹K

Summary

Rates of neutron capture reaction and the inverse on most of p-nuclei are important to determine the final abundances.

Previous Experimental Efforts on n-capture (from EXFOR & KaDoNiS)	
2000s	Se74, Kr78, Sr84, Ru96, Pd102, Te120, Ba130, Ba132, Dy156, Er164, Yb168, Hf174, W180, Os184, Pt190, Hg196, Ta180
1990s	Cd106, Cd108, Sn114, <mark>Sn115</mark> , Xe124, Xe126, Ce136, Ce138, Sm144, Gd152, Er162
1980s or earlier	Mo92, Mo94, In113, Sn112
No exp.	Ru98, La138, Dy158

Much efforts are devoted to measure the neutron capture rates on p-nuclei.