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Outline: 
 
- Why going underground to measure nuclear fusion 
reactions in a laboratory 
 
-The Luna Experiment: most important results 
            
- On-going measurements and future perspectives  
 



    Sun 
Luminosity = 2 ·1039 MeV/s 
 
Q-value ( H burning) = 26.73 MeV 
 
Reaction rate = 1038 s-1 
                Laboratory 
Rlab= Np Nt σ ε 
 
Np = number of projectile ions ≈ 1014 pps (100 µA q=1+) 
 
Nt = number of target atoms ≈ 1019 at/cm2 

 
σ = cross section = 10-15 barn 
 
ε= efficiency ≈ 100% for charged particles  
                            1% for gamma rays 
 
Rlab ≈ 0.3-30 counts/year 
 
 

 



Rlab > Bbeam induced + Benv + Bcosmic 

Bbeam induced : reactions with impurities in the target 

                 reactions on beam collimators/apertures  

Benv : natural radioactivity mainly from U and Th chains 

Bcosmic : mainly muons 
 



Cross section measurement requirements 
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3MeV < Eγ < 8MeV:     
 0.5 Counts/s 

3MeV < Eγ < 8MeV   
 0.0002 Counts/s 

GOING 
UNDERGROUND 

HpGe 

Pb 

Cu 
underground passive shielding is more 
effective since μ flux,that create 
secondary γ’s in the shield, is suppressed 
 

µ 

Eγ<3MeV→passive shielding for 
environmental  background radiation 



LUNA site 

LUNA 1 
(1992-2001) 

50 kV 

LUNA 2 
(2000…) 

400 kV 

Laboratory for Underground 

 Nuclear Astrophysics 

Radiation LNGS/surface 

Muons 
Neutrons 

10-6 

10-3 
 

LNGS 
(1400 m rock shielding ≡ 4000 m w.e.) LUNA MV 

2012 ? 



p + p →  d + e+ + νe 

d + p → 3He + γ 

3He +3He → α + 2p 
3He +4He → 7Be + γ 

7Be+e-→ 7Li + γ +νe  7Be + p → 8B + γ 

7Li + p →  α + α 
8B→ 2α + e++ νe 

84.7 % 13.8 % 

13.78 % 0.02 % 

pp chain 

4p → 4He + 2e+ + 2νe + 26.73 MeV 

LUNA results 



25Mg(p,γ)26Al 

1.8 MeV 26Al decay γ-ray line 

26Al produced before the formation 
of the solar system 

26Mg excess in meteorites 

Evidence that 26Al nucleosynthesis is 
still active (SN and NOVAE) 

T ½  = 7.2 105 y  
<< galactic time scale 
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25Mg(p,γ)26Al 

No direct strength resonance data 
(level structure derived from the 
single particle transfer reaction: 

25Mg(3He,d)26Al)  
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γ-ray Spectroscopy with 4πBGO  
+ solid target 

High efficiency (> 60%) – Low   
resolution set-up   

γ-ray Spectroscopy with HPGe 
→ High resolution - Low efficiency  

(<1% @ high energy) + 
 solid target @55° 

 

AMS Irradiation & Measurement 
→resonance strength ωγ  

CIRCE lab. Caserta, Italy 

Reactions per  
day (200µA) 

0.5·107 

1·105 

25 

25 



Precise measurement of a resonance  
accurate evaluation of the target stoichiometry  
Enriched targets may contain oxygen 
Study of "high" energy resonances with natural and 
enriched Mg targets of : 
 
25Mg(p,γ)26Al (Er=304 keV): Confirmed NACRE result but 
reduced uncertainty to 4%. This resonance will serve as 
normalization standard for lower-energy resonances 
 
24Mg(p,γ)25Al (Er=214 keV): lower resonance strength with 
respect to previous literature data. Strong direct capture 
component. Need of a re-analysis  with R-matrix   
 
26Mg(p,γ)27Al (Er=326 keV): apparent discrepancy in 
literature data solved. Resonance strength measured with 
higher accuracy 
 
 



25Mg(p,γ)26Al   

198 keV resonance HPGe γ-ray spectra: 
single transitions 

Iliadis et al, 1990 

LUNA 



18O(p,γ)19F 

11B(p,γ)12C 

19F(p,αγ)16O 

11B(p,γ)12C 

ωγBGO = (9.0 ± 0.5) × 10-7 eV 
 

ωγHPGe = (9.0 ± 0.4) × 10-7 eV 

198 keV resonance BGO γ-ray spectra 

ωγNACRE = (7.1 ± 1.0) × 10-7 eV 



92 keV resonance BGO γ-ray spectra 

total charge: 370 C 
run time: 24 days 
nat. bkg.: 28 days 

E = 86.5 keV 

(indirect) 



reaction Q-value 
(MeV) 

Gamow 
energy (keV) 

Lowest meas. 
Energy (keV) 

LUNA 
limit 

17O(p,γ)18F 5.6 35-260 300 65 
18O(p,γ)19F 8.0 50-200 143 89 
23Na(p,γ)24Mg 11.7 100-200 240 138 
22Ne(p,γ)23Na 8.8 50-300 250 68 
D(α,γ)6Li 1.47 50-300 700(direct) 

50(indirect) 
50 

CNO cycle 

Ne-Na cycle 

BBN 

In progress 

In progress 

LUNA present program 

to be completed presumably by 2014 



The 6Li case 

  

Constant amount in stars of different metallicity (age) 
2-3 orders of magnitude higher than predicted with the BBN 
network (NACRE) 
 
 
 
 
 
 
 
 
 
 
 
The primordial abundance is determined by: 
2H(α,γ)6Li producing almost all the 6Li 
6Li(p,α)3He destroying 6Li  well known 

6Li 
 

7Li 
BBN prediction 

BBN prediction 



[F. Hammache et al., 
Phys. Rev. C 82, 065803 (2010)] 

Direct measurements: 
Robertson et al.  
E > 1 MeV 
Mohr et al.  
around the 0.7 MeV resonance 
 
Indirect measurements: 
•Hammache et al. 
upper limits with high energy 
Coulomb break-up  
 
At LUNA direct measurements 
at the energies of 
astrophysical interest 
 
 
 
 
  

LUNA 

BBN 
energy region 
0 0.5 1.0 MeV 

Available data 



The beam-induced background 

d 
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3He 

α 
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- neutron background generated by d(α,α)d Rutherford scattering 
followed by d(d,n)3He reactions 
 

 
 
 
 
 

 
 
 
 
-> (n,n’γ) reactions on surrounding materials (Pb, Ge, Cu) 
-> much higher γ-ray background  

in the RoI for the d(α,γ)6Li DC transition (~1.6 MeV) 



Reduced gas volume: pipe to minimize the path of scattered 2H and hence 
to minimize the d(d,n)3He reaction yield 
  
- HPGe detector in close geometry: larger detection efficiency and 
improved sygnal-to-noise ratio 
 
- Silicon detectors to measure 2H(2H,p)3H 

Experimental set-up 

Germanium 
Detector  

Silicon Detectors to 
detect D(D,p)3H protons 

Steel pipe to 
minimize D+D 
reactions yield  



 Measurement strategy 
Expected Noise/Signal ratio is 16 at 400 keV (Signal from GSI data, Noise 
from LUNA data) 
 
Experimental strategy: 
 
Eγ = Q + ECM - ∆Erec- ∆EDoppler 
 
Measurement with α beam on 2H gas target at 400 keV 
(ROI: 1585-1620 keV) 
 
Measurement with α beam on 2H gas target at 280 keV 
(ROI: 1545-1580 keV) 
 
Subtraction of the two normalized spectra to obtain the 400 keV Signal 



 Preliminary data 



20 

Energy 
350-230 keV 

Energy 

0 

0 

400-280 keV 

Future measurements 
A measurement with the pair 350-230 keV can confirm/discard the 
hypothesis  that the excess seen around at 400 keV is a genuine 2H(α,γ)6Li 
signal 
At 350 keV the RoI centroid is shifted by approximately 17 keV (half of 
the total RoI). The expected N/S ratio is 19 (16 at 400 keV) 

Eα=400 keV 

Eα=350 keV 

35 keV 

35 keV 



 17O(p,γ)18F 
 17O+p is very important for hydrogen burning in different 
stellar environments: 
  
 - Red giants 
 - Massive stars 
 - AGB 
 - Novae 
 
 
  

ωγ193= (1.2±0.2)×10-6 eV 

ωγ193= (2.2±0.4)×10-6 eV 

Fox et al.  

Chafa et al. (activation) 



LUNA measurement 
 

Resonant and direct capture study 
with prompt gammas and 
activation (Ep=185-400 keV)  
 
 

 
 
 
 
 
 
 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
Enriched (70%) 17O targets on tantalum backings (anodization process) 



LUNA measurement 
193 keV resonance with prompt gammas  



LUNA measurement 
193 keV resonance with activation technique (18F18O) 
 



LUNA measurement 

Ep = 221 keV 

 
On-resonance (black)  
off-resonance (purple) 
 

LUNA 

Fox 

Ep = 200 keV 

Ep = 197 keV 

Ep = 228 keV 

937 keV 

Ep = 185 keV (below resonance)  

Study of the DC component is possible at LUNA 



 LUNA MV Project 
April 2007: a Letter of Intent (LoI) was presented to the 
LNGS Scientific Committee (SC) containing key reactions 
of the He burning and neutron sources for the s-process: 
12C(α,γ)16O 
13C(α,n)16O 
22Ne(α,n)25Mg 
(α,γ) reactions on 14,15N and 18O 
 
These reactions are relevant at higher temperatures 
(larger energies) than reactions belonging to the hydrogen-
burning studied so far at LUNA 

Higher energy machine 3.5 MV single ended positive ion 
accelerator 



Possible location at the "B node" of a 3.5 MV single-ended 
positive ion accelerator 



• In a very low 
background 

environment such as 
LNGS, it is 

mandatory not to 
increase the 

neutron flux above 
its average value 

Study of the LUNA-MV 
neutron shielding  by 

Monte Carlo simulations 

OnC 1613 ),(α
α beam intensity: 200 µA 

Target: 13C, 2 1017at/cm2 (99% 
13C enriched) 

Beam energy(lab)  ≤ 0.8 MeV 

MgnNe 2522 ),(α
α beam intensity: 200 µA 

Target: 22Ne, 1 1018at/cm2 
Beam energy(lab) ≤ 1.0 MeV 

OC 1612 ),( γαOnC 1613 ),(α from 
α beam intensity: 200 µA 

Target: 13C, 1 1018at/cm2 (13C/12C = 10-5) 
Beam energy(lab) ≤ 3.5 MeV 

• Maximum neutron production 
rate : 2000 n/s 

• Maximum neutron energy 
(lab) : 5.6 MeV 



Geant4 simulations for neutron fluxes just outside the 
experimental hall and on the internal rock walls 



Next-generation underground laboratory for 
Nuclear Astrophysics  
Executive summary 

This document originates from discussions held 
at the LUNA MV Roundtable Meeting that took 
place at Gran Sasso on 10-11 February 2011. It 

serves as a call to the European Nuclear 
Astrophysics community for a wider 

collaboration in support of the next-generation 
underground laboratory. To state your interest 

to contribute to any of the Work Packages, 
please add your name, contact details, and WP 

number under International Collaboration.  
 

WP1: Accelerator + ion source  
 
WP2: Gamma detectors  
 
WP3: Neutron detectors 
 
WP5: Solid targets 
 
WP6: Gas target  
 
WP7: Simulations  
 
WP8: Stellar model calculations 
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