Workshop on Thermonuclear Reaction Rates for Astrophysics Applications 24-25 November 2011, Athens, Greece

Theoretical predictions of reaction rates for light systems

P. Descouvemont

Université Libre de Bruxelles, Brussels, Belgium

- 1. Introduction
- 2. Models
 - The R-matrix method
 - Microscopic cluster models
- 3. Applications
 - The ¹²C(α , γ)¹⁶O reaction (R-matrix)
 - Hoyle state in the 3α process (MCM)
 - The ${}^{2}H(d,p){}^{3}H$, ${}^{2}H(d,n){}^{3}He$, and ${}^{2}H(d,\gamma){}^{4}He$ reactions
- 4. Conclusions

1. INTRODUCTION

General problems in nuclear astrophysics

- Low energies \rightarrow very low cross sections (Coulomb barrier)
- For heavy nuclei: high level densities \rightarrow many resonances must be known
- Need for radioactive beams
- No systematics (many different types of reactions)
- transfer, capture
- resonant, non-resonant
- low or high level densities
- → in most cases a theoretical support is necessary
 - data extrapolation (example: R-matrix method)
 Available cross sections are parametrized, and extrapolated down to stellar energies
 - determination of cross sections

The cross sections are determined from the wave functions of the system No need for experimental data (in principle!) Examples: potential model, **microscopic models** (low level densities)

shell model (resonance properties in for high level densities)

2. MODELS: the R-matrix method

The R-matrix method

- Introduced by Wigner (1937) to parametrize resonances (nuclear physics)
- Provides scattering properties at all energies (not only at resonances)
- Based on the existence of 2 regions (radius a):
 - Internal: coulomb+nuclear
 - external: coulomb

Exit channels

2. MODELS: the R-matrix method

• Internal region: The R matrix is given by a set of resonance parameters E_i , γ_i^2

$$R(E) = \sum_{i} \frac{\gamma_i^2}{E_i - E}$$

= $a \frac{\Psi'(a)}{\Psi(a)}$
= $1 = 3, E_3, \gamma_3^2$
= $1 = 2, E_2, \gamma_2^2$
= $1 = 1, E_1, \gamma_1^2$

• External region: Coulomb behaviour of the wave function $\Psi(r) = C(I(r) - UO(r))$

 \rightarrow the collision matrix U is deduced from the R-matrix (repeated for each spin/parity $J\pi$)

- Two types of applications:
 - phenomenological R matrix: γ_i^2 and E_i are fitted to the data (astrophysics)
 - calculable R matrix: γ_i^2 and E_i are computed from basis functions (scattering theory)
- Can be extended to multichannel calculations (transfer), capture, etc.
- Well adapted to nuclear astrophysics: low energies, low level densities

Microscopic cluster models

• Goal: solution of the Schrödinger equation $H\Psi = E\Psi$

with Hamiltonian: $H = \sum_i T_i + \sum_{j>i} V_{ij}$

T_I = kinetic energy of nucleon *i*

V_{ij} = nucleon-nucleon interaction (nuclear + coulomb)

• **Cluster** approximation $\Psi = \mathcal{A}\phi_1\phi_2g(\rho)$

with ϕ_1, ϕ_2 = internal wave functions (input, shell-model) $g(\rho)$ =relative wave function (output) \mathcal{A} = antisymmetrization operator

- Can be applied to reactions (E>0) AND spectrocopy (E<0)
- Cluster calculations: effective NN interactions
- Ab initio calculations: realistic NN interactions (limited to small nucleon numbers)

Many applications: not only nuclear astrophysics spectroscopy, exotic nuclei, elastic and inelastic scattering, etc.

Extensions:

Multicluster calculations: → deformed nuclei (example: ⁷Be+p)

- Multichannel calculations: $\Psi = \mathcal{A}\phi_1\phi_2g(\rho) + \mathcal{A}\phi_1^*\phi_2^*g^*(\rho) + \cdots$
 - → better wave functions
 - → inelastic scattering, transfer
- Ab initio calculations: no cluster approximation
 - \rightarrow very large computer times
 - → limited to light nuclei
 - → difficult for scattering (essentially limited to nucleon-nucleus)

3. APPLICATIONS: the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction

7.16

 $\alpha + {}^{12}C$

Application 1: The ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction (E2 component) with the R-matrix

Important for the ¹²C/¹⁶O ratio

Many difficulties:

- E1 and E2 are important (E1 better known than E2)
- Interference effets
- Subthreshold states
- \rightarrow many experiments, many calculations

 \rightarrow extrapolation (0.3 MeV) very uncertain

9.85

9.63

7.12

6.92

6.13

E2 \rightarrow 2⁺ states (=**poles**) are involved

- 2⁺₁ subthreshold state
- 2⁺₂, 2⁺₃ narrow resonances at 2.68 and 4.36 MeV
- background (high energy): other resonances

« Observed » (experimental) data: E_{ri} : energy of pole i $\Gamma_{\alpha i}$: α width (reduced γ^2) $\Gamma_{\gamma i}$: γ width

« R-matrix » data: E_i , γ_i^2 , $\Gamma_{\gamma i}$

$$R(E) = \sum_{i=1}^{4} \frac{\gamma_i^2}{E_i - E} \rightarrow \text{ phase shift}$$

$$\sigma(E) \sim \left| \sum_{i=1}^{4} \frac{\gamma_i \sqrt{\Gamma_{\gamma i}}}{E_i - E} \right|^2 \rightarrow \text{capture cross section}$$

link

3. APPLICATIONS: the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction

Ref: M. Dufour, P.D., Phys. Rev. C 78 (2008) 015808

4 poles, 3 parameters for each pole \rightarrow 12 parameters

pole	Ei	γ² _i	$\Gamma_{ m \gamma i}$
i=1	-0.24	fitted	exp.
i=2	2.68	exp.	exp.
i=3	4.36	exp.	exp.
i=4	variable	fitted	fitted

➔ 3 parameters (+background)

3 steps

- 1. Fix E_4 to different values
- 2. Fit of γ_1^2 , γ_4^2 (on the 2⁺ phase shift)
- 3. Fit of $\Gamma_{\gamma 4}$ (on the E2 S-factor)

3. Applications: the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction

Fit of the phase shifts $\rightarrow \gamma_1^2, \gamma_2^2$ several values of the background energy E₄

3. Applications: the ¹²C(α , γ)¹⁶O reaction

Fit of the S factor

→ only an upper limit can be deduced: S(300 keV) < 190 keV.b

→ can we constrain the R-matrix fit with microscopic results? yes, with the ANC of the 2⁺ subthreshold state 3. APPLICATIONS: the ¹²C(α , γ)¹⁶O reaction

Constrain from ANC

- Stands for Asymptotic Normalization Constant
- Defined from the asymptotic properties of the radial wave function

 $g_{\ell}(\rho) \longrightarrow C_{\ell} W_{-\eta_B, \ell+1/2}(2k_B \rho)$ W(x)=Wittakher function

- ANC proportional to $\gamma^2 \rightarrow$ for pole 1, γ^2 is taken from the theory
- Can be computed from microscopic models

pole	E,	γ² _i	$\Gamma_{\gamma i}$
i=1	-0.24	microscopic	exp.
i=2	2.68	exp.	exp.
i=3	4.36	exp.	exp.
i=4	variable	fitted	fitted

→ only 2 parameters (+background energy)

3. Applications: the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction

- Virtually independent of the background energy
- S_{E2}(300 keV)=42 ± 2 keV.b

→ ANC provides a strong constraint [cf C. Brune et al. PRL 83 (1999) 4025]

3. APPLICATIONS: the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction

Discussion of the 2^+_1 ANC Can be obtained from several techniques

- indirect (transfer) measurements: C ~ 1.5x10⁵ fm^{-1/2} example ¹²C(⁶Li,d)¹⁶O
- capture to 2⁺ state (« cascade »): C ~ 3.2x10⁵ fm^{-1/2} 2⁺ weakly bound → external capture (σ ~ |C|²)
- present: C = 1.3x10⁵ fm^{-1/2}
 Microscopic cluster me

Microscopic cluster model

- capture to the 2_1^+ state (E=-0.24 MeV)
- external process (σ~|C|² at low E)
- 2.5 MeV resonance (E1) missing
- amplitude inconsistent with indirect measurements
- Data from Redder et al. NPA462
 (1987) 385
- new experiment??

3. APPLICATIONS: microscopic cluster models

Application 2: variation of the ${}^{12}C(0^+_2)$ state with the deuteron binding energy

- Goal: Effects of the variation of fundamental constants on Population III stellar evolution
- Ref: S. Ekström et al., A&A 514 (2010) A62

- 3. APPLICATIONS: microscopic cluster models
- First calculation: $V_{ij} = \frac{e^2}{|r_i r_j|} + V_{ij}^N$
 - V^N_{ij} =nucleon-nucleon interaction (Minnesota)
 contains one parameter (standard value u=1): adjusted on E(¹²C)-E(⁸Be)
 reproduces E(d)=-2.22 MeV (independent of u)

- 3. APPLICATIONS: microscopic cluster models
- Second calculation: $V_{ij} = \frac{e^2}{|r_i r_j|} + (1 + \delta_{NN})V_{ij}^N$ Variation of $\delta_{NN} \rightarrow d$, ⁸Be, ¹²C change \rightarrow variation of E(¹²C)-E(⁸Be) as a function of E(d)

Application 3: The ${}^{2}H(d,p){}^{3}H$, ${}^{2}H(d,n){}^{3}He$, and ${}^{2}H(d,\gamma){}^{4}He$ reactions

Differences between cluster and ab initio models

Cluster models

- In general a good approximation, but do not allow the use of realistic NN interactions
- Example: α particle described by four 0s orbitals
 - \rightarrow intrinsic spin =0
 - ightarrow no spin-orbit, no tensor force, no 3-body force
 - \rightarrow these terms are simulated by (central) NN interactions

Ab initio models

- No cluster approximation
- Use of realistic NN interactions (fitted on deuteron energy, Q, NN phase shifts, etc.)
- Application: d+d systems ²H(d,γ)⁴He, ²H(d,p)³H, ²H(d,n)³He
- two physics issues
 - Analysis of the d+d S-factors (Big-Bang nucleosynthesis)
 - Role of the tensor force in ${}^{2}H(d,\gamma){}^{4}He$

²H(d,γ)⁴He S factor

- Ground state of ⁴He=0+
- E1 forbidden→ main multipole is E2 → 2⁺ to 0⁺ transition→ d wave as initial state
- Experiment shows a plateau below 0.1 MeV: typical of an s wave
- Interpretation : the ⁴He ground state contains an admixture of d wave final 0⁺ state: Ψ⁰⁺ = Ψ⁰⁺(L = 0, S = 0) + Ψ⁰⁺(L = 2, S = 2) = | 0⁺, 0 > + | 0⁺, 2 > initial 2⁺ state: Ψ²⁺ = Ψ²⁺(L = 2, S = 0) + Ψ²⁺(L = 0, S = 2) = | 2⁺, 0 > + | 2⁺, 2 >

Application: d+d systems

- Collaboration Niigata (K. Arai, S. Aoyama, Y. Suzuki)-Brussels (D. Baye, P.D.)
- Mixing of d+d, ³H+p, ³He+n configurations
- Ref.: K. Arai et al., Phys. Rev. Lett. 107 (2011) 132502

- The total wave function is written as an expansion over a gaussian basis
- Superposition of several angular momenta
- 4-body problem (in the cluster approximation we would have: x₁=x₂=0)

We use 3 NN interactions:

- Realistic: Argonne AV8', G3RS
- Effective: Minnesota MN

- No parameter
- MN does not reproduce the plateau (no tensor force)
- D wave component in ⁴He: 13.8% (AV8') 11.2% (G3RS)

Transfer reactions ²H(d,p)³H, ²H(d,n)³He

- MN force strongly understimates the data
- Good agreement with realistic force \rightarrow importance of the tensor force

4. CONCLUSION

Needs for nuclear astrophysics:

- low energy cross sections
- resonance parameters

Experiment: direct and indirect approaches

Theory: various techniques

- **fitting procedures** (R matrix)→ extrapolation
- microscopic models:
 - cluster: developed since 1960's, applied to NA since 1980's
 - \succ ab initio: problems with scattering states, resonances \rightarrow limited at the moment
- non-microscopic models: potential, DWBA, etc.
- Current challenges: new data on 3 He (α,γ) 7 Be, triple α process, 12 C (α,γ) 16 O, etc. heavier nuclei