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 Isotopic abundance in the solar system Ion-induced cross sections on heavy nuclei 

Interesting energy range usually 
 way below the Coulomb barrier 

Typical cross sections in µb range 

• Maximize number of reactions 
• Find efficient detection techniques 



 Isotopic abundance in the solar system Maximize beam current 

In activation and AMS experiments one can separate 
reaction site and counting site. 

A dedicated, high current, few MeV accelerator for 
protons and α‘s with excellent enery definition should 
be set up! (see ECOS/NuPECC report) 

Low cross sections can partly be compensated by high 
beam currents, but the target has to withstand it. 



 Isotopic abundance in the solar system Find efficient detection techniques: 
Two-step experiments 

Step 1: Induce the reaction of interest, e.g. 
              (p,γ), (α,γ), (α,n), ... 
 

Step 2: Take the irradiated sample and analyze it 

• using γ spectroscopy after β decay 
• using fingerprints from other decay paths  
• using Accelerator Mass Spectrometry (AMS) 



 Isotopic abundance in the solar system Find efficient detection techniques: 
One-step (in-beam) experiments 

Detect the ejectile in-beam after the reaction 
of interest, e.g. radiative capture  (p,γ) or (α,γ), 
or the reaction product (recoiling compound nucleus) 

• using 4π NaI summing crystals 
• using high resolution HPGe arrays 
• using recoil separators 



 Isotopic abundance in the solar system Find efficient detection techniques: 
Experiments with radioactive ion beams 

• Experiment is carried out in inverse kinematics 
 
 

• typically very low beam currents 
 

• H or He gas (jet) target, plastic target 
 

• in-beam oder two-step experiments (implantation)    

92Mo(p,γ)93Tc  p(92Mo,93Tc)γ 



 Isotopic abundance in the solar system Find efficient detection techniques: 
Two-step experiments 

Step 1: Induce the reaction of interest, e.g. 
              (p,γ), (α,γ), (α,n), ... 
 

Step 2: Take the irradiated sample and analyze it 

• using γ spectroscopy after β decay 
• using fingerprints from other decay paths  
• using Accelerator Mass Spectrometry (AMS) 



Activation followed by γ spectroscopy 
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Activation followed by γ spectroscopy 

Counting @ IKP Köln: 

Two 100% Clover (4 detectors each) 
plus addback, shielded by BGO and  
passive shielding  

Irradiation @ PTB Braunschweig 

He++ ions from TCC-CV28 cyclotron, 
energies between 11 and 15 MeV, 
ion current in µA range 



Eα=13.8 MeV @ PTB 

141Pr(α,n)144Pm: Single spectrum after activation 
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141Pr(α,n)144Pm: Single spectrum after activation 

A. Sauerwein et al., Phys. Rev. C 84 (2011) 045808  



Coincidence between two Clover segments 
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A. Sauerwein et al., Phys. Rev. C 84 (2011) 045808  

Talks by LARS NETTERDON and ANNE SAUERWEIN 
this afternoon 



Limitations of γ spectroscopy after irradiation 

Se (Z=34) 

Po (Z=84) 

Activation and subsequent 
 γ spectroscopy is limited by:  
 

• stable reaction products 
• very long half-life of reaction products 
• weak γ intensities of radioactive decays 

(α,γ) reaction not 
accessible by 
activation 



 Isotopic abundance in the solar system Find efficient detection techniques: 
Two-step experiments 

Step 1: Induce the reaction of interest, e.g. 
              (p,γ), (α,γ), (α,n), ... 
 

Step 2: Take the irradiated sample and analyze it 

• using γ spectroscopy after β decay 
• using fingerprints from other decay paths  
• using Accelerator Mass Spectrometry (AMS) 



Accelerator Mass Spectrometry 

Very high sensitivity: 
 isotope ratio up to 10-15 ion source 

pre accelerator 

ion 
identification 

magnetic 
spectro- 

graph (Tandem) accelerator 

magnetic 
spectro- 
graph 

Identify the compound nuclei in the target after irradiation 



Accelerator Mass Spectrometry 

Typical application: 
Detection of smallest amounts of  14C 
and/or of other cosmogenic nuclides 

(e.g. 10Be, 26Al, 36Cl, 41Ca, 129I) 

Turin shroud 

Oetzi 



Accelerator Mass Spectrometry 

But as well: Detection of nuclides 
produced in the laboratory  

Prominent examples: 
 
26Mg(p,n)26Al: M. Paul et al.,  PLB 94 (1980) 303  (26Al is a cosmogenic nuclide) 
 

40Ca(α,γ)44Ti: H. Nassar et al., PRL 96 (2006) 041102 
 

Problem: Each isotope to be 
measured needs development time 

for sample preparation and 
detection  

Talk by MICHAEL PAUL 
this afternoon 



A new AMS facility at the  
IKP, University of Cologne 

• Tandetron with  6 MV terminal voltage 
   (no moving parts) 
 

• standard isotopes: 10Be, 14C, 26Al, 36Cl, 41Ca, 129I 
   (geosciences, prehistory, protohistory) 
 

Universität 
zu Köln 

SFB 806: Our way to europe 

SPP 1158: Coordinated Antarctica research 

• ample beam time for development 
   and nuclear physics applications 
 



CologneAMS – a new option to measure 
 small reaction cross sections 

Ion source wheel , up to 200 probes 



CologneAMS – a new option to measure 
 small reaction cross sections 

• First 14C test measurement: February 2011 (all specifications fulfilled) 
     

• Start of standard operation: fall 2011 



 Isotopic abundance in the solar system Find efficient detection techniques: 
One-step (in-beam) experiments 

Detect the ejectile in-beam after the reaction 
of interest, e.g. radiative capture  (p,γ) or (α,γ) 
or the reaction product (recoiling compound nucleus) 

• using 4π NaI summing crystals 
• using high resolution HPGe arrays 
• using recoil separators 



• 14 HPGe γ detectors 
   in close geometry 
 

• Photopeak efficiency 
  at 1332 keV: up to 5% 
 

• Installed at  
  10 MV Tandem 

• High energy resolution to observe single transitions 
 

• Adequate efficiency to study low cross sections 
 

• Determination of angular distributions possible 
 

• Coincidence technique to suppress background 

The HORUS array at IKP Köln 



Experiments to study capture reactions 
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Partial cross sections 

Deexcitation of compound state 

92Mo(p,γ)93Tc 
93Tc 

Ep= 3300 keV 
Q = 4087 keV 

First in-beam (p,γ) experiment on 92Mo Radiative proton capture on 92Mo 



Total cross section 

 
Transitions to ground state 

92Mo(p,γ)93Tc 
93Tc 

Ep= 3300 keV 
Q = 4087 keV 

First in-beam (p,γ) experiment on 92Mo Radiative proton capture on 92Mo 



Partial cross sections Total cross section Production of 1st excited state 

 
 
Transitions to 1st excited state 

92Mo(p,γ)93Tc 
93Tc 

Ep= 3300 keV 
Q = 4087 keV 

First in-beam (p,γ) experiment on 92Mo Radiative proton capture on 92Mo 



Coincidence with Eγ=833 keV 

No coincidence 

E [keV] 

92Mo(α,γ)96Ru 
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Background reduction using γ-γ coincidence techniques 



Coincidence with Eγ=833 keV 

No coincidence 

92Mo(α,γ)96Ru 

Background reduction using γ-γ coincidence techniques 

1275 



 Isotopic abundance in the solar system One-step (in-beam) experiments using 
high resolution HPGe arrays 

Yields a wealth of information on 
 
• partial and total cross sections 
• gamma ray strength function 
• structure of compound system 

Talk by SOTIRIS 
this afternoon 



 Isotopic abundance in the solar system Find efficient detection techniques: 
Experiments with radioactive ion beams 

• Experiment is carried out in inverse kinematics 
    typically very low beam currents 
 

• H or He gas (jet) target 
 

• In-beam oder two-step experiments (implantation)    



 Isotopic abundance in the solar system Experiment with radioactive ion beams @ ESR 

ESR@GSI 

Gas jet 

Particle detectors • radioactive ion beam injected 
   in storage ring 
 

• deceleration and cooling possible 
 

• internal H or He gas jet target 
 

• detection of ions with in-ring 
   silicon strip detectors 

Courtesy: M. Heil 



 Isotopic abundance in the solar system Pilot experiment with stable beam: 
96Ru(p,γ)97Rh  

Courtesy: M. Heil 

σPG < 4.0 mb 

Without (p,n) component –  
resulting in an upper limit  
for  (p,γ) 

Non-smoker: 3.5 mb 
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Experimental techniques to measure ion-induced 
cross sections and applications to the p process 





Gamma-ray strength functions used in TALYS code 

Generalized Lorentzian Kopecky-Uhl for E1 radiation 

Brink-Axel standard Lorentzian 

Hartree-Fock BCS tables for E1 radiation 

Hartree-Fock-Bogolyubov tables for E1 radiation 

TALYS 1.2: 
A. Koning, S. Hilaire,  M. Duijvestijn 



Partial cross sections for 92Mo(p,γ) 



Population of levels in 92Mo(p,γ) 



Radiative α capture: 92Mo(α,γ) 

92Mo(α,γ)96Ru 

Eα= 9300 keV 
Q = 1692 keV 

σ(experiment) = 382 ± 100 µb 

σ(TALYS)           = 422 µb 
96Ru* → 96Ru 



Beamtime distribution at CologneAMS 

20 % 15 % 

Maintenance 

Development 

External  
Users  

Geosciences 

Environmental Research 

Astrophysics 

Medicine 

others 

> 25 % 

special 
applications 

< 20 % 

Ion implantation 

Users from 
Cologne  and 
    Potsdam Nuclear Chemistry 

Nuclear Physics 

Geology 

Geography 

... 

> 20 % 
Pre- and Protohistory 



CologneAMS – a new option to measure 
 small reaction cross sections 

Inauguration: October 1st, 2010 



CologneAMS – a new option to measure 
 small reaction cross sections 

Inside the Tandetron 
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