Experimental techniques to measure ion-induced cross sections and applications to the p process

V. Derya, J. Endres, A. Hennig, J. Mayer, L. Netterdon, S. Pascu, S. Pickstone, A. Sauerwein, F. Schlüter, M. Spieker, and A. Z.

Institut für Kernphysik, Universität zu Köln

supported by **DFG** (ZI 510/5-1 and INST 216/544-1)

Ion-induced cross sections on heavy nuclei

Interesting energy range usually way below the Coulomb barrier

- Maximize number of reactions
- Find efficient detection techniques

Maximize beam current

Low cross sections can partly be compensated by high beam currents, but the target has to withstand it.

In activation and AMS experiments one can separate reaction site and counting site.

A dedicated, high current, few MeV accelerator for protons and α 's with excellent enery definition should be set up! (see ECOS/NuPECC report)

Find efficient detection techniques: Two-step experiments

Step 1: Induce the reaction of interest, e.g. $(p,\gamma), (\alpha,\gamma), (\alpha,n), ...$

Step 2: Take the irradiated sample and analyze it

- using γ spectroscopy after β decay using fingerprints from other decay paths
- using Accelerator Mass Spectrometry (AMS)

Find efficient detection techniques: **One-step (in-beam) experiments**

Detect the ejectile in-beam after the reaction of interest, e.g. radiative capture (p,γ) or (α,γ) , or the reaction product (recoiling compound nucleus)

- using 4π Nal summing crystals
 using high resolution HPGe arrays
 using recoil separators

Find efficient detection techniques: Experiments with radioactive ion beams

• Experiment is carried out in inverse kinematics

 $^{92}Mo(p,\gamma)^{93}Tc \rightarrow p(^{92}Mo,^{93}Tc)\gamma$

- typically very low beam currents
- H or He gas (jet) target, plastic target
- in-beam oder two-step experiments (implantation)

Find efficient detection techniques: <u>Two-step experiments</u>

<u>Step 1</u>: Induce the reaction of interest, e.g. (p,γ) , (α,γ) , (α,n) , ...

Step 2: Take the irradiated sample and analyze it

• using γ spectroscopy after β decay

- using fingerprints from other decay paths
- using Accelerator Mass Spectrometry (AMS)

Activation followed by γ spectroscopy

Activation followed by γ spectroscopy

Irradiation @ PTB Braunschweig

He++ ions from TCC-CV28 cyclotron, energies between 11 and 15 MeV, ion current in μ A range

Counting @ IKP Köln:

Two 100% Clover (4 detectors each) plus addback, shielded by BGO and passive shielding

¹⁴¹Pr(α ,n)¹⁴⁴Pm: Single spectrum after activation

¹⁴¹Pr(α ,n)¹⁴⁴Pm: Single spectrum after activation

A. Sauerwein et al., Phys. Rev. C 84 (2011) 045808

Coincidence between two Clover segments

Talks by LARS NETTERDON and ANNE SAUERWEIN this afternoon

A. Sauerwein et al., Phys. Rev. C 84 (2011) 045808

Limitations of γ spectroscopy after irradiation

Find efficient detection techniques: <u>Two-step experiments</u>

<u>Step 1</u>: Induce the reaction of interest, e.g. (p,γ) , (α,γ) , (α,n) , ...

Step 2: Take the irradiated sample and analyze it

• using γ spectroscopy after β decay

- using fingerprints from other decay paths
- using Accelerator Mass Spectrometry (AMS)

Accelerator Mass Spectrometry

Identify the compound nuclei in the target after irradiation

Accelerator Mass Spectrometry

Typical application: Detection of smallest amounts of ¹⁴C and/or of other cosmogenic nuclides (e.g. ¹⁰Be, ²⁶Al, ³⁶Cl, ⁴¹Ca, ¹²⁹I)

Accelerator Mass Spectrometry

But as well: Detection of nuclides produced in the laboratory

Problem: Each isotope to be measured needs development time for sample preparation and detection

Talk by MICHAEL PAUL this afternoon

²⁶Mg(p,n)²⁶Al: M. Paul et al., PLB 94 (1980) 303 (²⁶Al is a cosmogenic nuclide) ⁴⁰Ca(α, γ)⁴⁴Ti: H. Nassar et al., PRL 96 (2006) 041102

- Tandetron with 6 MV terminal voltage (no moving parts)
- standard isotopes: ¹⁰Be, ¹⁴C, ²⁶Al, ³⁶Cl, ⁴¹Ca, ¹²⁹I (geosciences, prehistory, protohistory)

SFB 806: Our way to europe

SPP 1158: Coordinated Antarctica research

 ample beam time for development and nuclear physics applications

Universität zu Köln

CologneAMS – a new option to measure small reaction cross sections

CologneAMS

Ion source wheel, up to 200 probes

CologneAMS – a new option to measure small reaction cross sections

- First ¹⁴C test measurement: February 2011 (all specifications fulfilled)
- Start of standard operation: fall 2011

Find efficient detection techniques: <u>One-step (in-beam) experiments</u>

Detect the ejectile in-beam after the reaction of interest, e.g. radiative capture (p,γ) or (α,γ) or the reaction product (recoiling compound nucleus)

- using high resolution HPGe arrays
- using recoil separators

The HORUS array at IKP Köln

- **14 HPGe** γ **detectors** in close geometry
- Photopeak efficiency at 1332 keV: up to 5%
- Installed at 10 MV Tandem
- High <u>energy resolution</u> to observe single transitions
- Adequate <u>efficiency</u> to study low cross sections
- Determination of <u>angular distributions</u> possible
- <u>Coincidence</u> technique to suppress background

Experiments to study capture reactions

Radiative proton capture on ⁹²Mo

Radiative proton capture on ⁹²Mo

Radiative proton capture on ⁹²Mo

Background reduction using γ - γ coincidence techniques

Background reduction using γ - γ coincidence techniques

One-step (in-beam) experiments using high resolution HPGe arrays

Yields a wealth of information on

- partial and total cross sections
- gamma ray strength function
- structure of compound system

Talk by SOTIRIS this afternoon

Find efficient detection techniques: Experiments with radioactive ion beams

- Experiment is carried out in inverse kinematics
 → typically very low beam currents
- H or He gas (jet) target
- In-beam oder two-step experiments (implantation)

Experiment with radioactive ion beams @ ESR

ESR@GSI

- radioactive ion beam injected in storage ring
- deceleration and cooling possible
- internal H or He gas jet target
- detection of ions with in-ring silicon strip detectors

Courtesy: M. Heil

Pilot experiment with stable beam: ${}^{96}Ru(p,\gamma){}^{97}Rh$

Without (p,n) component – resulting in an upper limit for (p,γ)

 σ_{PG} < 4.0 mb

Non-smoker: 3.5 mb

Courtesy: M. Heil

Experimental techniques to measure ion-induced cross sections and applications to the p process

V. Foteinou, A. Lagoyannis, S. Harissopulos INP Demokritos, Athens, Greece

> H.W. Becker, D. Rogalla Ruhruniversität Bochum

> > U. Giesen PTB Braunschweig

supported by **DFG** (ZI 510/5-1 and INST 216/544-1)

RUB

Gamma-ray strength functions used in TALYS code

Brink-Axel standard Lorentzian

Generalized Lorentzian Kopecky-Uhl for E1 radiation

Hartree-Fock BCS tables for E1 radiation

Hartree-Fock-Bogolyubov tables for E1 radiation

TALYS 1.2: A. Koning, S. Hilaire, M. Duijvestijn

Partial cross sections for $^{92}Mo(p,\gamma)$

Population of levels in $^{92}Mo(p,\gamma)$

Radiative α capture: ⁹²Mo(α , γ)

Beamtime distribution at CologneAMS

CologneAMS – a new option to measure small reaction cross sections

Inauguration: October 1st, 2010

CologneAMS – a new option to measure small reaction cross sections

Inside the Tandetron