Experiments of photoreaction cross sections: what has been done so far and left for a future development

THERRAA, November 24 - 25 2011, Athens, Greece

H. Utsunomiya (Konan University)

Outline

Photoreaction studies in the last decade
 Future perspectives

Historical aspects

<u>1960s~1980s</u>

Nuclear Physics: GDR by (γ, n) measurements E1, M1 excitations by (γ, γ') measurements γ -ray sources: bremsstrahlung positron annihilation in flight @ LLNL, Saclay 1990s~Present Nuclear Astrophysics: Nucleosynthesis P. Mohr et al., Phys. Lett. B 488 (2000) 127 Nuclear Physics: PDR, M1 γ -ray sources: bremsstrahlung @ Darmstadt, ELBE laser-Compton scattering @ AIST, Duke-HIγS

• Energy

Personal View of Photoreactions in Astrophysics $(\gamma,n) (\gamma,\gamma') (\gamma,p) (\gamma,\alpha)$

- **1.** <u>The reciprocity theorem</u> to determine radiative capture cross sections for light nuclei
- 2. γ SF of direct relevance to <u>p-process</u>
- 3. <u>Isomer</u> as a probe of NLD
- <u>The γSF method</u> to determine radiative neutron capture cross sections for unstable nuclei
- 5. <u>Nuclear structure</u>: PDR, M1

Reciprocity theorem $A + n \neq B + \gamma + Q$

$$\frac{\sigma(\gamma \to n)}{(2I_A + 1)2p_n^2} = \frac{\sigma(n \to \gamma)}{(2I_B + 1)2p_\gamma^2} \qquad p_\gamma = \hbar k = \frac{E_\gamma}{c} \qquad p_n^2 = 2\mu E_n$$

K.Y. Hara et al., PRD 68 (2003)

Personal View of Photoreactions in Astrophysics $(\gamma,n) (\gamma,\gamma') (\gamma,p) (\gamma,\alpha)$

- 1. <u>The reciprocity theorem</u> to determine radiative capture cross sections for light nuclei
- 2. γ **SF** of direct relevance to <u>p-process</u>
- 3. <u>Isomer</u> as a probe of NLD
- <u>The γSF method</u> to determine radiative neutron capture cross sections for unstable nuclei
- 5. <u>Nuclear structure</u>: PDR, M1

Stellar photodisintegration rates can be determined from stellar capture rates by the reciprocity theorem.

$$\lambda_{\gamma} = \left(\frac{A_{i}A_{j}}{A_{m}}\right)^{3/2} \frac{(2J_{i}+1)(2J_{j}+1)}{(2J_{m}+1)} \frac{G_{i}(T^{*})}{G_{m}(T^{*})} \qquad i(j,\gamma)m$$
$$\times (T^{*})^{3/2} F e^{-Q/kT^{*}} N_{A} \langle \sigma_{i}v \rangle^{*}$$

However, this does not apply to the p-process nuclei with low natural abundances and unstable nuclei with short half-lives.

Extra strength was found around Sn in the γ SF of 181Ta.

 $\gamma SF > Sn$ photoreaction rate for the g.s. $\gamma SF < Sn$ photoreaction rates for excited states

Personal View of Photoreactions in Astrophysics $(\gamma,n) (\gamma,\gamma') (\gamma,p) (\gamma,\alpha)$

- 1. <u>The reciprocity theorem</u> to determine radiative capture cross sections for light nuclei
- 2. γ SF of direct relevance to <u>p-process</u>
- 3. **Isomer** as a probe of NLD
- <u>The γSF method</u> to determine radiative neutron capture cross sections for unstable nuclei
- 5. <u>Nuclear structure</u>: PDR, M1

Goko et al. Phys. Rev. Lett. 96 (2006)

Hilaire & Goriely, NPA779 (2006)

Personal View of Photoreactions in Astrophysics $(\gamma,n) (\gamma,\gamma') (\gamma,p) (\gamma,\alpha)$

- 1. <u>The reciprocity theorem</u> to determine radiative capture cross sections for light nuclei
- 2. γ SF of direct relevance to <u>p-process</u>
- 3. <u>Isomer</u> as a probe of NLD
- **4.** <u>The γSF method</u> to determine radiative neutron capture cross sections for unstable nuclei
- 5. <u>Nuclear structure</u>: PDR, M1

γ-ray strength function method

H. Utsunomiya et al., PRC80 (2009)

follows the statistical model of the radiative neuron capture in the formation of a compound nucleus and its gamma decay

Structure of γ -ray strength function

Primary strength E1 strength in the low- energy tail of GDR

Methodology of _γSF method

Methodology of _γSF method

neutron capture by **GDR** (γ,n) unstable nucleus $^{A+1}X(n,\gamma)^{A+2}X$ Extrapolation is made by using the same model which is justified for stable isotopes. (γ,n) (γ,n) A-1 Α A+1 A+2 S_n known (**n**,γ) (n,γ) to be determined

Sn isotopes

STEP 1 <u>Measurement</u> of (γ, n) cross sections

STEP 2 – Extrapolation of γ SF to the low-energy region

<u>HFB+QRPA E1 strength</u> supplemented with a pygmy E1 resonance in Gaussian shape

 $E_o \sim 8.5$ MeV, $\Gamma \sim 2.0$ MeV, $\sigma_o \sim 7$ mb

~ 1% of TRK sum rule of GDR

STEP 2 – Justification of the extrapolated γ SF

STEP 3 –

Statistical model calculations of (n,γ) cross sections for radioactive nuclei

¹²¹Sn[T_{1/2}=27 h]

¹²³Sn[T_{1/2}=129 d]

Results for Zr isotopes

⁹³Zr[T_{1/2}=1.5×10⁶ y]

long-lived fission product nuclear waste

Comparison with the surrogate reaction technique

Forssèn et al., PRC75, 055807 (2007)

Zr isotopes

1. The surrogate reaction technique gives larger cross sections by a factor of ~ 3 than the γ SF method.

The surrogate reaction technique gives similar cross sections to those given by the γ SF method provided that a choice is made of the Lorentian type of γ SF.

Personal View of Photoreactions in Astrophysics $(\gamma,n) (\gamma,\gamma') (\gamma,p) (\gamma,\alpha)$

- 1. <u>The reciprocity theorem</u> to determine radiative capture cross sections for light nuclei
- 2. γ SF of direct relevance to <u>p-process</u>
- 3. <u>Isomer</u> as a probe of NLD
- <u>The γSF method</u> to determine radiative neutron capture cross sections for unstable nuclei
- 5. <u>Nuclear structure</u>: PDR, M1

Future of (y,n)

Future of (γ,n)

The γSF method @ RIKEN-RIBF and GSI

Coulomb dissociation experiments

F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)

Application of the γSF method to the r-process

 $\frac{131}{3} Sn(n,\gamma)^{132} Sn$ cross sections in the *n*-process nucleosynthesis

The astrophysical significance is controversial ! BUT this would be the first application to a very neutron-rich nucleus.

A pioneering work is in progress. Nadia Tsoneva @ Giessen. 1) A systematic study of the γ SF for Sn isotopes 116Sn ,..., 124Sn (7 stable) $\rightarrow \rightarrow \rightarrow 132$ Sn

132Sn(γ,n) data: GSI Coulomb dissociation data for 132Sn

Present of (γ, p) (γ, α)

Only a few cases

M. Erhard et al., Journal of Physics Conf. Ser. 202 (2010)

Future of (γ, p) (γ, α)

Efforts were made and being made, but lack accuracy to address a few-body problem.

D, 3He, 4He:	cloud chamber
3He, 4He:	liquid He scintillator
12C:	emulsion chamber

16O(γ , α)12C: STAR bubble chamber O-TPC @ HI γ S

Achievements are yet to come.

Summary

We continue to study γ SF in the context of nucleosynthesis.

- 1. Nuclear Physics Experiment
- a. (γ,n) (γ,γ') c.s. measurements
 real photons for stable nuclei: NewSUBARU, HIγS, ELBE etc.
 ELI-NP (Bucharest-Magurele, Romania)

virtual photons for unstable nuclei (CD): RIKEN-RIBF, GSI

- b. (γ, p) (γ, α) c.s. measurements Future prospect is unclear, depending on ...
- 2. Nuclear Theory
 - a. good models of γSF
 primary strength: low-energy E1 of GDR
 extra strengths: PDR, M1
 - b. good models of NLD