Measurements of the ^{90,91,92,93,94,96}Zr neutron capture cross-section at n_TOF facility

G.Tagliente n_TOF collaboration **INFN**

n_TOF Collaboration

U.Abbondanno¹⁴, G.Aerts⁷, H.Álvarez²⁴, F.Alvarez-Velarde²⁰, S.Andriamonje⁷, J.Andrzejewski³³, P.Assimakopoulos⁹, L.Audouin⁵, G.Badurek¹, P.Baumann⁶, F. Bečvář³¹, J.Benlliure²⁴, E.Berthoumieux⁷, F.Calviño²⁵, D.Cano-Ott²⁰, R.Capote²³, A.Carrillo de Albornoz³⁰, P.Cennini⁴, V.Chepel1⁷, E.Chiaveri⁴, N.Colonna1³, G.Cortes²⁵, D.Cortina²⁴, A.Couture²⁹, J.Cox²⁹, S.David⁵, R.Dolfini¹⁵, C.Domingo-Pardo²¹, W.Dridi⁷, I.Duran²⁴, M.Embid-Segura²⁰, L.Ferrant⁵, A.Ferrari⁴, R.Ferreira-Marques¹⁷, L.Fitzpatrick⁴, H.Frais-Koelbl³, K.Fujii¹³, W.Furman¹⁸, C.Guerrero²⁰, I.Goncalves³⁰, R.Gallino³⁶, E.Gonzalez-Romero²⁰, A.Goverdovski¹⁹, F.Gramegna¹², E.Griesmayer³, F.Gunsing⁷, B.Haas³², R.Haight²⁷, M.Heil⁸, A.Herrera-Martinez⁴, M.Igashira³⁷, S.Isaev⁵, E.Jericha¹, Y.Kadi⁴, F.Käppeler⁸, D.Karamanis⁹, D.Karadimos⁹, M.Kerveno⁶, V.Ketlerov¹⁹, P.Koehler²⁸, V.Konovalov¹⁸, E.Kossionides³⁹, M.Krtička³¹, C.Lamboudis¹⁰, H.Leeb¹, A.Lindote¹⁷, I.Lopes¹⁷, M.Lozano²³, S.Lukic⁶, J.Marganiec³³, L.Marques³⁰, S.Marrone¹³, P.Mastinu¹², A.Mengoni⁴, P.M.Milazzo¹⁴, C.Moreau¹⁴, M.Mosconi⁸, F.Neves¹⁷, H.Oberhummer¹, S.O'Brien²⁹, M.Oshima³⁸, J.Pancin⁷, C.Papachristodoulou⁹, C.Papadopoulos⁴⁰, C.Paradela²⁴, N.Patronis⁹, A.Pavlik², P.Pavlopoulos³⁴, L.Perrot⁷, R.Plag⁸, A.Plompen¹⁶, A.Plukis⁷, A.Poch²⁵, C.Pretel²⁵, J.Quesada²³, T.Rauscher²⁶, R.Reifarth²⁷, M.Rosetti1¹, C.Rubbia⁵, G.Rudolf⁶, P.Rullhusen¹⁶, J.Salgado³⁰, L.Sarchiapone⁴, C.Stephan⁵, G.Tagliente¹³, J.L.Tain²¹, L.Tassan-Got⁵, L.Tavora³⁰, R.Terlizzi¹³, G.Vannini³⁵, P.Vaz³⁰, A.Ventura¹¹, D.Villamarin²⁰, M.C.Vincente²⁰, V.Vlachoudis⁴, R.Vlastou⁴⁰, F.Voss⁸, H.Wendler⁴, M.Wiescher²⁹, K.Wisshak⁸

40 Research Institutions

120 researchers

Scientific Motivations (n,γ) X-sections of Zr

The Thermal Pulse Stellar model: the Zr case

There is some inconsistency using
the TP stellar model to calculate the $\rm N_{\rm s}$
abundances with values of the
Zr cross sections before n_TOF.

- The uncertainty on the N_{\odot} is 10%
- The uncertainty on Zr cross sections

Nucleus	N_{Θ}	$ m N_s/ m N_{\odot}$			
	Normalized to				
	N(Si)=10 ⁶ atoms				
⁹⁰ Zr	5.546	0.789			
⁹¹ Zr	1.21	1.066			
⁹² Zr	1.848	1.052			
⁹⁴ Zr	1.873	1.217			
⁹⁶ Zr	0.302	0.842			

for low mass AGB star (1.5 - 3 M_{\odot})

- ranges from 5% to 20% (depending on the isotopes).
- There are discrepancies up to 50% on the results of some measurements

New measurements with high accuracy needed !

The n_TOF facility at CERN

 Spallation of high-energy proton beam on a lead target (~360 neutrons/proton)

<u>7x10¹² protons/bunch @ 20</u>
 <u>GeV/c</u> from the PS accelerator (6 ns time resolution)

0.8 Hz maximum repetition rate

<u>Very high instantaneous neutron flux</u> fundamental for studying small samples and radioactive isotopes

(n,γ) Total energy detection

Improvements in the Experimental Setup & Data Analysis

•Lowest neutron sensitivity No neutron background corrections !

(n,γ) Total energy detection

Improvements in the ExperimentalSetup & Data Analysis

•Lowest neutron sensitivity No neutron background corrections !

Zr measurements

Zr isotope samples

	Isotopic content (%)						
Sample	⁹⁰ Zr	⁹¹ Zr	⁹² Zr	⁹³ Zr	⁹⁴ Zr	⁹⁶ Zr	
⁹⁰ Zr	97.7	0.87	0.6	-	0.67	0.16	
⁹¹ Zr	5.43	89.9	2.68	-	1.75	0.24	
⁹² Zr	4.65	1.62	91.4	-	2.03	0.3	
⁹³ Zr*	1.5	19.0	20.0	20.0	20.0	19.0	
⁹⁴ Zr	4.05	1.18	1.93	-	91.8	1.04	
⁹⁶ Zr	19.41	5.21	8.2	-	8.68	58.5	

Admixture: Hf, Na, Mg, Al ...

* Radio isotope ($T_{1/2} = 1.5 \times 10^6$ year)

Zr measurements @ n_TOF

	⁹⁰ Zr	⁹¹ Zr	⁹² Zr	⁹³ Zr	⁹⁴ Zr	⁹⁶ Zr	¹⁹⁷ Au	Pb
Mass (g)	2.717	1.404	1.349	4.88	2.015	3.398	1.871	3.895
Thickness (cm)	0,127	0,065	0,062	0,37	0,091	0,151	0.025	0.09
Chemical form	ZrO ₂	Metal	Metal					
Enrichment (%)	97.7	89.9	91.4	20.0	91.8	58.5	100	Nat.

Samples 2.2 cm in diameter, 1 mm thick Stable Zr isotopes encapsulated in 0.2 mm Al can ⁹³Zr isotope encapsulated in 0.2 mm Al + 0.2 mm Ti

Chemical form:ZrO₂

⁹³Zr isotope activity 92.5 MBq

Results - ⁹³Zr yield

MACS: results

MACS:@ 30 keV

MACS in mbarn

Astrophysical implication: Abundances

Curtsey of R. Gallino and S. Bisterzio								
Nucleus	$\mathbf{N}_{\mathbf{\Theta}}$	$ m N_s/ m N_{\Theta}$ %	${ m N_s}/{ m N_{\Theta}}$ %					
	Normalized to	Old MACS	n_TOF MACS					
	N(Si)=10 ⁶ atoms							
⁹⁰ Zr	5.546	0.789	0.844					
⁹¹ Zr	1.21	1.066	1.024					
⁹² Zr	1.848	1.052	0.981					
⁹⁴ Zr	1.873	1.217	1.152					
⁹⁶ Zr	0.302	0.842	0.321					

Solar abundances, N_{\odot} , from Lodders 2009, accuracy 10%

The s-abundances, N_s, are calculated using the TP stellar model for low mass AGB star (1.5 - 3 M_{\odot}).

Old MACS are from the KADoNiS data base 2008. Since 2009 the databases has been update at the new n_TOF data, as the new data are released.

Astrophysical implication: Zr/Nb

A lower ${}^{93}Zr(n,\gamma)$ value means that more ${}^{93}Zr$ is produced. After radiogenic decay of ${}^{93}Zr$ more Nb will result.

The final result is ~50% more Nb!

Elemental Nb and Zr abundances in SiC

With the new ${}^{93}Zr(n,\gamma)$ cross section the problem is solved.

Zr publications

Neutron capture cross section of ⁹⁰Zr: bottleneck in the s-process reaction flow: G. Tagliente et al., PRC 77(2008)

Study of the ${}^{91}Zr(n,\gamma)$ reaction up to 26 keV: G. Tagliente et al., PRC 78(2008)

The ${}^{92}Zr(n,\gamma)$ reaction and its implications on stellar nucleosynthesis: G. Tagliente et al., PRC 81(2010)

Neutron capture on ⁹⁴Zr: Resonance parameters and Maxwellianaveraged cross sections: G. Tagliente et al., PRC 84(2011)

⁹⁶Zr(n,) measurement at the n_TOF facility at CERN: G. Tagliente et al., PRC accepted

Conclusion

- New neutron capture measurements on ^{90,91,92,93,94,96}Zr were done at n_TOF facility
- MACS calculated from the new data for most of the Zr isotopes are lower than the previous MACS
- ◆ MACS uncertainty improved by a factor 2
- The new MACSs work much better when used in the TP stellar model to calculate the s-process abundances, proving the validity of the model

THANKS