

Nuclear Inputs to model codes

S. Hilaire¹, A.J. Koning² & S. Goriely³

1 CEA, DAM, DIF, F-91297 Arpajon, France

2 Nuclear Research and Consultancy Group, Petten, The Netherlands

3 Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Brussels, Belgium

Nuclear cross sections : how ?

Generally evaluated with analytic models

Analytical OMP Analytical level densities Analytical strength function Analytical fission barriers ...

But for exotic nuclei ?

Extrapolations, predictive power ?

OK close to stability

Predictive & Robust Nuclear models (codes) are essential to fill the gaps

→ General features of TALYS

- → From phenomenological to microscopic predictions
- → Few results
- \rightarrow What else ?

What TALYS does!

- nergie atomique energies aitematives
 - Simulates a nuclear reaction between a projectile and a target

projectiles : n,p,d,t,³he, ⁴he target : $3 \le Z \le 110$ or $5 \le A \le 339$

- Projectile energy from 1keV up to 200 MeV
- TALYS mantra : " Completeness then quality "
 - Optical, pre-equilibrium and statistical model implemented with sets of default parameters
 - All opened channels smoothly described
 - Possibilities for future improvements anticipated
 - Level densities (stored and interpolated)
 - Parity dependence
 - Still under development (improvement)

CECI	F	low TALYS wor	ks !	
energie atomique - energies alternatives	OPTICAL MODEL (ECIS) Phenomenologic Local or global Semi-Microscopic	DIRECT REACTION Spherical / DWBA Deformed / Coupled channel Rotational Vibrational Giant Resonances Pickup, stripping, exchange	COMPOUND Hauser-Feshbach Fluctuations Fission γ Emission Level densities GC + Ignatyuk Tabulated	OUTPUT
INPUT projectile n element Fe mass 56	Tabulated		Superfluid Model	AS Spectra Astro-rates Fission yields
Loop over energies and isotopes	STRUCTURE Abundances Discrete levels Deformations	PRE-EQUILIBRIUM Exciton model Partial densities Kalbach systematic	MULTIPLE EMISSION Exciton model Hauser-Feshbach Fission	FF decay ENDF
	Masses Level densities Resonances	Angular distributions Cluster emissions γ emission	γ cascade Exclusive channels Recoils	

S. HILAIRE

THERRAA Workshop

24-25 November 2011

What TALYS yields !

- Cross sections : total, reaction, elastic, inelastic (per level & total) etc ...
- Elastic and inelastic angular distribution
- Exclusive reaction channels : xs, spectra & ddx
- Exclusive discrete and continuum γ-ray production (cascade treated)
- Photonuclear reactions & reactions on isomeric targets
- Fission cross sections and fission yields
- Residuals production and recoils
- Total particle production : xs, spectra & ddx
- Extrapolation down to thermal energy
- Stellar reaction rates
- Fission fragment decay
- Level density tables

Can we calculate nuclear reaction cross sections starting from a nucleon-nucleon interaction ?

Yes we can but we need intermediate steps

HFB + v-v interactions !

Comparison with experimental masses (2149 nuclei: Audi, Wapstra & Thibault 2003)

D values (s-waves & p-waves)

Results at B_n

Description similar to that obtained with other global approaches

Combinatorial level densities

Global adjustment

See NPA 810 (2008) 13 for details

$$\rho_{\text{renorm}}(U) = e^{\alpha} \sqrt{(U - \delta)} \qquad \rho_{\text{global}}(U - \delta)$$

α and δ adjusted to fit discrete levels (\approx 1200 nuclei) and D₀'s (\approx 300 nuclei) using the TALYS code

Few result

energie atomique • energies alternatives

Approaches implemented in TALYS

Phenomenologic

Adjusted parameters Weak predictive power Very precise (≈1%) Important work

No adjustable parameters Usable without exp. data Less precise (≈ 5-10 %) Quasi-automated

Phenomenological OMP

- \approx 20 adjusted parameters
- Very precise (1%)
- Relatively weak predictive power far away from stability

Semi-microscopic OMP

- No adjustable parameters

- Based on nuclear structure properties
 - \Rightarrow usable for any nucleus
- Less precise than the phenomenological approach

Semi-microscopic OMP

Enables to perform predictions for exotic nuclei for which there exist no experimental data (yet)

\Rightarrow Significanted if fiet evit bs for existing the tal data.

Microscopic vs Phenomenologic γ -ray

\Rightarrow Impact not essential close to stability but crucial otherwise.

From phenomenological to microscopic predictions

Few results

What else ?

Microscopic fission barrier shapes

\Rightarrow For exotic nuclei : strong deviations from Hill-Wheeler.

⁹⁰Zr (n,p) ⁹⁰Y

Fully (almost) microscopic cross section

energie atomique • energies aitematives

⁹⁰Zr (n,2n) ⁸⁹Zr

Cross section (mb)

18

20

\Rightarrow Nofatilical outations for adjustment of the applications.

THERRAA Workshop

Coherent fission cross sections with microscopic ingredients

HFB-14 predictions of fission barriers and NLD at saddle points, including renormalization (5 parameters) of

- fission path height: $B_f'(\beta_2) = B_f(\beta_2) \ge v_{corr} \implies$ no change of the topology !!
- NLD at 1st and 2^d saddle points: $\rho'(U,J,P) = \rho(U-\delta,J,P)e^{\alpha\sqrt{U-\delta}}$

Additional nuclear inputs:

- Nuclear structure properties: HFB-14 (Goriely et al. 2007)
- Optical potential: Soukhovitskii et al. (2004)
- γ-ray strength: Hybrid model (Goriely, 1998)
- Equilibrium NLD: HFB-14 plus combinatorial model (Goriely et al., 2008) normalized on s-wave spacings and discrete levels

Note:

- no class 2 states included
- no discrete transition states included
- Experimental data in EXFOR only !

Few results

S. HILAIRE

THERRAA Workshop

24-25 November 2011

THERRAA Workshop

What else ?

energie atomique • energies alternatives

• Cross section modeling quite easy for non fissile nuclei

Microscopic or Phenomenological OMP, Γ_{γ} , LDs

⇒ full microscopic calculation for non fissile nuclei almost possible

What else?

• **Difficult but feasible** cross section modeling for fissile nuclei

• Web site opened in October 2006 : WWW.talys.eu

⇒ All microscopic ingredients mentioned included in the distribution

ener

Level densities with D1M

Method applied using the D1M Gogny force single particle levels, moments of inertia, quadrupole vibrational levels.

- D1M (rms \approx 798 keV) = update of D1S (rms \approx 3 MeV)

FIG. 2: (Color online) Dipole responses for ²³⁸U. Transition probabilities B(E1) are given in e²fm². Lorentzian distribution of 2 MeV width folding of the QRPA prediction (full line) shifted by 2 MeV with respect to the simple folding (dashed line) is plotted in order to compare with photo-absorption data. .

S. HIL

).)

What else ?

What else ?

energie atomique • energies alternatives

- New level densities for pre-equilibrium (done but not tested)
- JLM OMP : spherical (OK) deformed (soon)
- Neutron multiplicities from FF decay (under dev.)
- Microscopic ingredients with Gogny instead of Skyrme (under dev.)
 - already done for v-v interaction
 - well started for nuclear level densities
 - encouraging for γ -strength functions
 - tests still needed for fission paths (triaxiality, octupole, continuity ...)

Remember 6th commandement

Use microscopic information as much as you can