Nuclear Astrophysics @ GANIL

François de Oliveira Santos

Spectroscopy of ¹⁹Ne

J. Gomez-Gomar et al	., Mon. Not. R.
Astron. Soc. 296, 913	(1998).

Novae

M. Hernanz, J. Jose, A. Coc, J. Gomez-Gomar, and J. Isern, Astrophys. J. 526, L97 (1999).

A. Coc, M. Hernanz, J. Jose, and J.-P. Thibaud, Astron. Astrophys. 357, 561 (2000).

¹⁹ Ne							
No	E_x^{a} (MeV)	E _r (keV)	J ^{πb}	Γ_{γ}^{c} (eV)	$ heta_p^{2\mathbf{d}}$	Γ_p^{d} (keV)	Γ_{α}^{e} (keV)
1	6.419	8(6)	$(\frac{3}{2}^+)$	0.77(41)	0.12(2)	2.2(4)E-37	0.27(27)
2	(6.422)	11(30)	$(\frac{11}{2}^+)$	0.35(18)	(0.1)	1.8(18)E-38	20(14)E-3
3	6.437	26(9)	$\frac{1}{2}^{-}$	[1(1)]	0.01	1.1(11)E-20	220(20) (M)
4	6.449	38(7)	$(\frac{3}{2}^+)$	1.1(6)	0.03(3)	4(4)E-15	1.3(10)
5	(6.504)	93(30)	$(\frac{7}{2}^+)$	0.14(8)	(0.1)	4.6(46)E-10	0.4(4)
6	(6.542)	131(30)	$(\frac{9}{2}^{+})$	0.30(16)	(0.1)	2.7(27)E-12	1.3(11)E-2
7	6.698	287(6)	$(\frac{5}{2}^+)$	0.29(15)	0.01	1.2(12)E-5	1.2(10)
8	6.741	330(6)	$\frac{3}{2}^{-}$	5.0(26)	-	2.22(69)E-3	5.2(37)
9	(6.841)	430(30)	$(\frac{3}{2})$	2.8(15)	(0.01)	9.7(97)E-3	25(18)
10	6.861	450(6)	$\frac{7}{2}^{-}$	2.3(12)	(0.01)	1.1(11)E-5	1.2(0.9)
11	(6.939)	528(30)	$(\frac{1}{2}^{-})$	[1(1)]	(0.01)	3.4(34)E-2	99(69)
12	(7.054)	643(30)	$(\frac{5}{2}^+)$	[1(1)]	(0.1)	4.7(47)E-2	29(25)
13	7.0757	664.7(16)	$\frac{3}{2}^{+}$	[1(1)]	-	15.2(1)	23.8(12) (M)
14	7.173	762(5)	$(\frac{11}{2}^{-})$	0.15(8)	(0.01)	9.8(98)E-8	1.2(10)E-2
15	7.238	827(6)	$\frac{3}{2}^{+}$	[1(1)]	-	0.35(35)	6.0(52)

States above proton threshold

Outlook

This experiment					Previous measurements			
Label	$E_r(\text{keV})$	$E_x(MeV)$	$\Gamma (\text{keV})$	J^{π}	$E_x(MeV)$	$\Gamma (\text{keV})$	J^{π}	ref
А	669(5)	7.079(5)	32(8)	$\frac{3}{2}(+)$	7.075(1.6)	39(2.2)	$\frac{3}{2}^{+}$	[7]
В	793(31)	7.203(31)	35(12)	$\frac{3}{2}(+)$	$7.173(5) \\ 7.238(6)$	-	-	[5] [5]
С	1092(30)	7.502(30)	17(7)	$\frac{5}{2}(-)$	7.500(9) 7.531(11)	$16(16) \\ 31(16)$	-	[5] [5]
D	1206(5)	7.616(5)	21(10)	$\frac{3}{2}(+)$	7.608(11) 7.644(12)	$45(16) \\ 43(16)$	$\frac{3}{2}^{+}$	[17] [5]
Е	1452(39)	7.863(39)	292(107)	$\frac{1}{2}(+)$	-	-	-	
F	1564(10)	7.974(10)	11(8)	$(\frac{5}{2}^{-})$	7.944(15)	-	-	[18]
					8.069(12)	-	-	[18]

J.C. Dalouzy et al. Physical Review Letters. April 24th 2009

- New (improved using VAMOS spectrometer) experiment accepted at GANIL to study ¹⁹Ne states in the Gamow peak
- Other reactions possible in the future, like ${}^{30}P(p, \gamma){}^{31}S$
- Direct measurement possible in the future (SPIRAL2)

¹⁶O(³He,p)¹⁸F Expected intensity ~ 10⁷ pps

Letter of Intent for SPIRAL 2

The Letter of Intent should be prepared using the following template and sent in electronic form (preferably as a pdf file) to the Chairman of the SPIRAL 2 Scientific Advisory Committee *Muhsin Harakeh* (*harakeh@kvi.nl*) with a copy to the Scientific Co-ordinator of SPIRAL 2 *Marek Lewitowicz* (*Lewitowicz@ganil.fr*) before **October 2nd 2006.** Further information on the facility and envisaged physics programme can be found at: http://www.ganil.fr/research/developments/spiral2/

Title: α-capture reactions in inverse kinematics relevant to stellar nucleosynthesis

<u>Spokesperson(s)</u> (max. 3 names, laboratory, e-mail - please underline among them one corresponding spokesperson):

<u>S. Harissopulos, NCSR Demokritos, sharisop@inp.demokritos.gr</u> F. de Oliveira Santos, GANIL, oliveira@ganil.fr

GANIL	⁴ He(⁷⁸ K	(r,γ) ⁸² Sr	PAC date (fill in): May, 2007	EXP # (Do not fill in): E		
If Be or Ni production targets are to be used, indicate the maximum beam intensity the target can handle. Test runs which may be needed to commission new apparatus are encouraged, but should be presented as separate proposals.						
Title*: Alpha-Capture Reactions in Inverse Kinematics Relevant to P-Process Nucleosynthesis						

Wien Filter of LISE

• WF collects all charge states of product of interest

- $\Delta v \sim 5\%$ (between the primary beam and the CN)
- The LISE WF has a specific fringe fields only ion optics code of ray tracing type are relevant

- Primary beam very well rejected, almost with factor 10¹¹
- Too high intensity of scattered beam at energy ~20 MeV lower than the energy of the direct primary beam

Outlook

• Very good rejection factor

•Target homogeneity is a major issue (dust deposited on solid target)

Electron Screening Effect

(Assenbaum et al. Z. Phys. A - Atom Nuclei 327, 461 468 (1987))

Still not well understood

Beta and EC decay Influenced by the electron screening in metals

N ₀	Nucleus	Host	Measurement	Effect	Reference	
1	^{22}Na	Pd	12K and 293K	8.5 %	[Limata 06a]	
2	²² Na	AI	12K and 293K	No effect	[Ruprecht 08b]	
3	²² Na	Pd	15K and 293K	3.4 %	[Gang 08]	
1	1 7 D a	Pd	Metal at 12K	82 %	[Wang 06]	
4	De		and insulator LiO ₂ at 12K	02 /0		
5	7_{Re}	In	Metal at 12K	64 %	[Wang 06]	
5	De		and insulator LiO ₂ at 12K	04 70		
6 $7 R_{o}$		Pd W Zr Ta	Metals at 293K	No effect	[Limata 06b]	
Ŭ	De	1 u, vv, zr, ra	compared to adopted values	No enect		
7	^{7}Be	Cu	12.5K and 293K	No effect	[Kumar 08]	
8	^{7}Be	C_{60}	5K and 293K	1.5% absolute	[Ohtsuki 07]	
9	^{198}Au	Au	12K and 293K	11.8%	[Spillane 07]	
10	^{198}Au	Au	10K and 293K	No effect	[Ruprecht 08a]	
11	^{198}Au	Au	19K and 293K	No effect	[Goodwin 07]	
12	^{198}Au	Al-Au	12.5K and 293K	No effect	[Kumar 08]	
13	¹⁹⁶ Au	Au	10K and 293K	No effect	[Ruprecht 08a]	
14	^{64}Cu	Cu	12K and 293K	No effect	[Fallin 08]	
15	^{74}As	Ge, Ta	from 250mK to 293K	No effect	[Farkas 09]	

A new experiment proposed:

- Search for superconducting effects

Nb Tc = 9 K G. Stoppini, Il Nuovo Cimento 13, 1181 (1991) Cooper pair = Bose Statistic

- Minimize systematic error

¹⁹Ne / ¹⁹O 5.10⁵ pps 4 AMeV GANIL
Optimized setup (plastics on scalers)
1 hour / 1 hour

- Measure branching ratios

$$ft = f(\mathcal{Q}'_0, Z)T_{1/2} = \text{const}$$

$$\lambda_{\beta} = \sum_{i} \lambda^{(i)}$$
 or $\frac{1}{T_{1/2}^{\beta}} = \sum_{i} \frac{1}{T_{1/2}^{(i)}},$

$$BR^{(i)} = \frac{\lambda^{(i)}}{\lambda_{\beta}}$$
 or $BR^{(i)} = \frac{T_{1/2}^{\beta}}{T_{1/2}^{(i)}},$

Results

Half-life of ¹⁹O – β^- decay

Half-life of ¹⁹Ne – β^+ decay

Results

Relative branching-ratios of ¹⁹O

Gamma ray ratio 197keV/1554keV

Gamma ray ratio 197keV/4337keV

Outlook

• Effect observed!

900 eV ¹⁹O 400 eV ¹⁹Ne

Smaller than predicted

U_{scr}= ~1 or 10 % of theoretical prediction

• In principle, a factor 10 in precision is possible, if beam intensity higher

Combined half-lives:

¹⁹Ne : 17.254 \pm 0.005 s ¹⁹O : 26.476 \pm 0.010 s

Unbound nuclei

Iulian Stefan Thesis 2007 Tours 2006, Procon 2006 Eprint: nucl-ex/0603020

Longer Lifetime?

Thank you

J.C. Dalouzy¹, L. Achouri⁵, M. Aliotta², C. Angulo^{3*}, H. Benhabiles⁶, C. Borcea⁴, R. Borcea⁴, P. Bourgault¹, A. Buta⁴, A. Coc⁶, A. Damman³, T. Davinson², F. de Grancey¹, F. de Oliveira Santos¹, N. de Séréville⁷, J. Kiener⁶, M.G. Pellegriti¹, F. Negoita⁴, A.M. Sánchez-Benítez³, O. Sorlin¹, M. Stanoiu⁴, I. Stefan^{1,4}, P.J. Woods²
¹ Grand Accélérateur National d'Ions Lourds (GANIL). CEA/DSM-CNRS/IN2P3. B. P. 55027. F-14076 Caen Cedex 5, France
² School of Physics and Astronomy. University of Edinburgh. Edinburgh EH9 3JZ, United Kingdom
³ Centre de Recherche du Cyclotron. Université catholique de Louvain. B-1348 Louvain-la-Neuve, Belgium
⁴ Horia Hulubei National Institute of Physics and Nuclear Engineering. P.O. Box MG6 Bucharest-Margurele, Romania
⁵ Laboratoire de Physique Corpusculaire ENSICAEN. CNRS-IN2P3 UMR 6534 et Université de Caen. F-14050 Caen, France
⁶ CSNSM UMR 8609. CNRS-IN2P3/Univ.Paris-Sud Bât. 104. 91405 Orsay Campus, France
⁷ Institut de Physique Nucléaire UMR 8608. CNRS-IN2P3/Univ.Paris-Sud. F-91406 Orsay, France

Alpha-particle capture reactions in inverse kinematics relevant to p-process nucleosynthesis

S. Harissopulos, A. Lagoyannis, T. Konstantinopoulos, I. Manolakos, P. Demetriou Institute of Nuclear Physics, NCSR "Demokritos", Aghia Paraskevi, Athens, Greece F. de Oliveira Santos, O. Sorlin, I. Stefan, J.-C. Dalouzy, F. de Grancey GANIL, Caen, France H. W. Becker

Dynamitron-Tandem-Laboratorium (DTL), Ruhr-Universität Bochum, Bochum, Germany C. Angulo, Maria Grazia Pellegriti

FYNU/CRC, Universite catholique de Louvain, Louvain-la-Neuve, Belgium

A. S. Murphy, T. Davinson, P. Woods University of Edinburgh, Edinburgh, UK

M. Couder University of Notre Dame, USA

M. Paul

Hebrew University, Jerusalem, Israel R. Julin for the JYFL Gamma Group Department of Physics, University of Jyväskylä, Finland