# Counting Setup for Activation Measurements in Nuclear Astrophysics

# L. Netterdon, M. Elvers, J. Endres, A. Hennig\* A. Sauerwein\*, F. Schlüter, and A. Zilges

Institut für Kernphysik, Universität zu Köln



Workshop on Thermonuclear Reaction Rates and Astrophysics Applications

Athens, November 25th, 2011

Supported by the DFG under contract DFG ZI 510/5-1 \*Member of the Bonn-Cologne Graduate School of Physics and Astronomy

L. Netterdon, IKP, Universität zu Köln, AG Zilges

- measurement of  $\alpha$ -induced reactions
- experimental difficulties due to: measurement at energies below the Coulomb barrier for heavy nuclei (E<sub>Gamow</sub> ≈ 6 – 14 MeV)
- e.g. for <sup>168</sup>Yb( $\alpha,\gamma$ ): E<sub>Gamow</sub>  $\approx$  7 11 MeV << E<sub>coul</sub>  $\approx$  24 MeV

- measurement of  $\alpha$ -induced reactions
- experimental difficulties due to: measurement at energies below the Coulomb barrier for heavy nuclei (E<sub>Gamow</sub> ≈ 6 – 14 MeV)
- e.g. for <sup>168</sup>Yb(α,γ): E<sub>Gamow</sub> ≈ 7 − 11 MeV << E<sub>coul</sub> ≈ 24 MeV

very sensitive determination of small cross sections needed

- measurement of  $\alpha$ -induced reactions
- experimental difficulties due to: measurement at energies below the Coulomb barrier for heavy nuclei (E<sub>Gamow</sub> ≈ 6 – 14 MeV)
- e.g. for <sup>168</sup>Yb( $\alpha,\gamma$ ): E<sub>Gamow</sub>  $\approx$  7 11 MeV << E<sub>coul</sub>  $\approx$  24 MeV

very sensitive determination of small cross sections needed

## A solution: activation measurements







L. Netterdon, IKP, Universität zu Köln, AG Zilges



L. Netterdon, IKP, Universität zu Köln, AG Zilges

- 2 HPGe clover detectors
- passive background suppression by Cu and Pb
- covers large solid angle
- allows γγ coincidences
   talk by A. Sauerwein







L. Netterdon, IKP, Universität zu Köln, AG Zilges

- 2 HPGe clover detectors
- passive background suppression by Cu and Pb
- covers large solid angle
- allows γγ coincidences
   talk by A. Sauerwein





L. Netterdon, IKP, Universität zu Köln, AG Zilges

- 2 HPGe clover detectors
- passive background suppression by Cu and Pb
- covers large solid angle
- allows γγ coincidences
   talk by A. Sauerwein
- different target geometries possible
- accurate target positioning of 0.1 mm



L. Netterdon, IKP, Universität zu Köln, AG Zilges Counting Setup for Activation Measurements in Nuclear Astrophysics



- Absolute photopeak efficiency @ 1332 keV ≈ 5 %
- Distance to end cap: 13 mm

# Data acquisition

- digital data acquisition
- XIA DGF-4C modules
- 14-bit Pipeline ADC
- sampling of preamplifier output at 80 MHz
- listmode data



XIA LLC, User's Manual Digital Gamma Finder DGF-4C Revision F, Version 4.03

# Data acquisition

- digital data acquisition
- XIA DGF-4C modules
- 14-bit Pipeline ADC
- sampling of preamplifier output at 80 MHz
- listmode data



# Data acquisition

- digital data acquisition
- XIA DGF-4C modules
- 14-bit Pipeline ADC
- sampling of preamplifier output at 80 MHz
- listmode data





L. Netterdon, IKP, Universität zu Köln, AG Zilges Counting Setup for A

# Digitizer – basic design



L. Netterdon, IKP, Universität zu Köln, AG Zilges



L. Netterdon, IKP, Universität zu Köln, AG Zilges

# Fast and slow filter algorithm

# fast filter → time determination slow filter → energy determination



L. Netterdon, IKP, Universität zu Köln, AG Zilges Counting Setup for Activation Measurements in Nuclear Astrophysics

# Activation measurement of $^{168}$ Yb( $\alpha$ ,n)

motivation: improvement of reaction network at <sup>168</sup>Yb



T<sub>1/2</sub>(<sup>171</sup>Lu) = 8.24 d  
target thickness = 
$$230 - 450 \frac{\mu g}{cm^2}$$
  
activation period: 5 – 20 hours

• 
$$E_{\alpha} = 12.9 - 15.1 \text{ MeV}$$

#### measurement of <sup>168</sup>Yb( $\alpha$ ,n) to improve $\alpha$ -nucleus OMP

# Activation measurement of $^{168}$ Yb( $\alpha$ ,n)

motivation: improvement of reaction network at <sup>168</sup>Yb



• 
$$T_{1/2}(^{171}Lu) = 8.24 d$$
  
• target thickness =  $230 - 450 \frac{\mu g}{cm^2}$   
• activation period: 5 – 20 hours

• 
$$E_{\alpha} = 12.9 - 15.1 \text{ MeV}$$

#### measurement of <sup>168</sup>Yb( $\alpha$ ,n) to improve $\alpha$ -nucleus OMP

Activation measurement of  $^{168}$ Yb( $\alpha$ ,n)



counting period ≈ 23 h

# Results: <sup>168</sup>Yb( $\alpha$ ,n)<sup>171</sup>Hf



A.J. Koning, S. Hilaire and M.C. Duijvestijn, TALYS-1.2 T. Rauscher, NON-SMOKER<sup>WEB</sup>,5.8.1dw

# Results: <sup>168</sup>Yb( $\alpha$ ,n)<sup>171</sup>Hf



Rauscher, NON-SMOKERWEB, 5.8.1dw

no calculation reproduces energy dependence correctly <sup>k</sup>

 overprediction of cross sections up to one order of magnitude

# Results: <sup>168</sup>Yb( $\alpha$ ,n)<sup>171</sup>Hf



Rauscher, NON-SMOKERWEB, 5.8.1dw

- no calculation reproduces energy dependence correctly <sup>k</sup>
- overprediction of cross sections up to one order of magnitude
- $\Rightarrow$  influence of  $\gamma$  and n-width

- counting setup used for determination of small cross sections
  - coincidence technique
  - advantages of digital data acquisition
- addback algorithm to improve peak-to-background ratio

- counting setup used for determination of small cross sections
  - coincidence technique
  - advantages of digital data acquisition
- addback algorithm to improve peak-to-background ratio
- measurement of cross sections between  $E_{\alpha} = 12.9 \text{ MeV} 15.1 \text{ MeV}$  of <sup>168</sup>Yb( $\alpha$ ,n)<sup>171</sup>Hf near the Gamow window
- no calculation reproduces energy dependence

- counting setup used for determination of small cross sections
  - coincidence technique
  - advantages of digital data acquisition
- addback algorithm to improve peak-to-background ratio
- measurement of cross sections between  $E_{\alpha} = 12.9 \text{ MeV} 15.1 \text{ MeV}$  of <sup>168</sup>Yb( $\alpha$ ,n)<sup>171</sup>Hf near the Gamow window
- no calculation reproduces energy dependence
- influence of γ-strength function, nuclear level density and n-OMP



V. Derya, M. Elvers, J. Endres, A. Hennig,J. Mayer, S. Pascu, S. Pickstone,A. Sauerwein, F. Schlüter, M. Spieker,K.-O. Zell, and A. Zilges



H.W. Becker and D. Rogalla





L. Netterdon, IKP, Universität zu Köln, AG Zilges Counting Setup for Activation Measurements in Nuclear Astrophysics

# <sup>168</sup>Yb( $\alpha$ ,n)<sup>171</sup>Hf - Sensitivity



# <sup>168</sup>Yb( $\alpha$ , $\gamma$ )<sup>171</sup>Hf - Sensitivity





L. Netterdon, IKP, Universität zu Köln, AG Zilges



L. Netterdon, IKP, Universität zu Köln, AG Zilges