Workshop on Thermonuclear Reaction Rates for Astrophysics Applications Athens 24-25 November 2011

Lifetime measurement of the 6.79 MeV state in ¹⁵O with the AGATA Demonstrator array Caterina Michelagnoli INFN and University of Padova, Italy

November 24th , 2011

the Carbon-Nitrogen-Oxygen (CNO) cycle and the ¹⁴N(p,Υ)¹⁵O reaction

nuclear x-sections are precisely known

C,N abundances in the solar core can be obtained by measuring the neutrino fluxes [W.C.Haxton et al., As.J.687(2008)678]

possible solution for the "solar composition problem" [A.M.Serenelli et al., As.J.Lett. 705, L123-L127 (2009)]

¹⁴N(p,Υ)¹⁵O is the <u>"bottle neck"</u>

$^{14}N(p,\Upsilon)^{15}O$ x-section: the capture to the ground state in ^{15}O

M. Marta / Progress in Particle and Nuclear Physics 66 (2011) 303-308

Captures to different excited states in ¹⁵O contribute to the x-section. The one to the gs in ¹⁵O is dominated by the tail of the sub-threshold resonance at -507 keV (**6.79 MeV state in ¹⁵O**) [C.Angulo et al., NP A690 (2001) 755, M.Marta et al., PR C78 (2008) 022802(R),]

$^{14}N(p,\Upsilon)^{15}O$ x-section: the width of the -507 keV sub-threshold resonance

M. Marta / Progress in Particle and Nuclear Physics 66 (2011) 303-308

H.P. Trautvetter et al., JPG 35 (2008) 014019 and courtesy of M. Marta

Lifetime of the 6.79 MeV state in ¹⁵O:

already measured...but the uncertainty is still too large!!!

GROUP	METHOD	T [fs]	Ref.
Oxford 1968	DSAM d(14N,15O)n	< 28	W. Gill et al., NP A121, 209 (1968)
TUNL 2001	DSAM 14N(p,Ƴ)15O	1.6±0.7	P.F. Bertone et al., PRL 87, 152501 (2001)
RIKEN 2004	CE 208Pb(150,150*)	0.69±0.43	K. Yamada et al., PL B579, 265 (2004)
LUNA 2004	X-section+R matr. fit	1.1±0.5	A. Formicola et al., PL B591, 61 (2004)
TUNL 2005	X-section+R matr. fit	0.3 <u>±</u> 0.1	R. Runkle et al., PRL 94, 082503 (2005)
Bochum 2008	DSAM 14N(p,Y)150	< 0.77	D. Schuermann et al., PR C77, 055803 (2008)
LUNA 2008	X-section+R matr. fit	0.75 <u>±</u> 0.20	M. Marta et al., PR C78, 022802(R) (2008)

DSAM (Doppler Shift Attenuation Method) (DIRECT!) lifetime measurement

in inverse kinematics exploiting the detection efficiency and energy resolution of the AGATA HPGe array

the experiment: reaction and setup

¹⁴N + ²H @ 32 MeV (Tandem XTU, LNL) \rightarrow main reaction prod.: ¹⁵O (Q_{gs}=5.1 MeV)

 $\vartheta \approx 160 \deg \rightarrow$ cos ϑ ≈ -0.94

¹⁵N (Q_{gs}=8.6 MeV)

Advanced**GA**mma**T**racking**A**rray Demonstrator

4 (nowadays 5) asymmetric triple-clusters: 36-fold **segmented** HPGe 12(15) Efficiency and Energy resolution @ 1.3MeV : ≈2% (≈2.7%), 2.5 keV @ 7 MeV : ≈0.5% (≈0.7%), 4.8 keV

digital electronics \rightarrow decomposition of signal shapes \rightarrow pulse Shape Analysis \rightarrow gamma-ray tracking

data analysis: θ first interaction point *vs* gamma energy

first interaction point of each gamma-ray reconstructed eventby-event with a 4mm indetermination

detected gamma-rays can be sorted in few degrees θ "slices"

data analysis: θ first interaction point *vs* gamma energy

data analysis: the "test" 8.31 MeV level in ¹⁵N

162[°]

168[°]

500

400

300 conuts 200 conuts

(*from Γ=(0.3±0.2) eV [R. Moreh et al., PRC 23 (1981) 988])

156[°]

data analysis: reaction kinematics

both ¹⁵O and ¹⁵N excited levels are mainly populated *via* nucleon (proton and

data analysis: the "test" 8.31 MeV level in ¹⁵N

"just a guess" : proton CM energy distribution = Maxwell-Boltzmann with kT=4MeV

(*from Γ=(0.3±0.2) eV [R. Moreh et al., PRC 23 (1981) 988])

data analysis:

the "test" 8.31 MeV level in ¹⁵N

(*from Γ=(0.3±0.2) eV [R. Moreh et al., PRC 23 (1981) 988])

data analysis: the 6.79 MeV level in ¹⁵0

data analysis: the 6.79 MeV level in ¹⁵0

concluding remarks

- First application of advanced gamma-ray detection for the study of high-energy gamma rays of astrophysical interest
- First DSAM studies exploiting a continuum of angles
- \succ "test" lifetime(s) in ¹⁵N \rightarrow method sounds ok!
- insights on the reaction mechanism are needed to fully trust and use the Montecarlo simulations for the lineshape analysis...
- ➤ qualitative (for the moment...) considerations on ¹⁵O: "short" lifetime ...once we have a value → new R-matrix fit

Collaborators

R.Depalo^{1,2}, C.A. Ur³, R. Menegazzo³, C. Broggini³, D. Bazzacco³, A. Caciolli³, E. Farnea³, S. Lunardi³, D. Bemmerer⁴, N. Keeley⁵, M. Erhard³, Zs. Fülöp⁶, A. Gottardo¹, M. Marta⁴, D. Mengoni³, T. Mijatović⁷, F. Recchia³, T. Szücs⁶, J.J. Valiente–Dobon¹ ¹INFN Laboratori Nazionali di Legnaro, Italy ²Dipartimento di Astronomia dell'Univ. di Padova, Italy ³INFN Padova, Italy ⁴Forschungszentrum Dresden Rossendorf, Dresden, Germany ⁵The Andrzej Soltan Institute for Nuclear Studies, Warsaw, Poland ⁶ ATOMKI, Debrecen, Hungary ⁷Ruđer Bošković Institute, Zagreb, Croatia and the AGATA collaboration

Athens_November 24th , 2011 _ Caterina Michelagnoli (cmichela@pd.infn.it)