Monte Carlo Rate Propagation for Experimentalists

R. Longland, C. Iliadis, A.E. Champagne, J.R. Newton, C. Ugalde, A. Coc, and R. Fitzgerald

> Universitat Politècnica de Catalunya Grup d'Astronomia i Astrofísica

> > November 25, 2011

Monte Carlo Error Propagation

Reaction Rate per Particle Pair

$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu}} \frac{1}{(kT)^{3/2}} \int_0^\infty E \sigma(E) e^{-E/kT} dE$$

- Draw a random number from each distribution
- Perform calculation
- Repeat (1) and (2) many times
- Analyse final y-distribution

R. Longland (UPC)

THERRAA

x = 0.5, z = 3.2

y = 1.6

y = 1.5, 2.3, 1.2, 1.4, 1.2, 1.8, 1.6, 1.5, 2.0

A Fictional Example

Directly Measured Resonances

•
$$E_r^{\text{lab}} = 830 \text{ keV } J^{\pi} = 2^+$$

 $\Gamma_{\alpha} = 2.8 \times 10^{-5} \text{ eV}, \Gamma_{\gamma} = 3.0(15) \text{ eV},$
 $\Gamma_n = 2.5(17) \times 10^2 \text{ eV}$

Indirectly Measured Resonances

$$E_r^{\text{lab}} = 226 \text{ keV } J^{\pi} = 1^{-} \\ S_{\alpha} = 1.9 \times 10^{-2}, \Gamma_{\gamma} = 0.72(18) \text{ eV} \\ F_r^{\text{lab}} = 395 \text{ keV } J^{\pi} = 1^{-}$$

$$S_{\alpha} = 2.8 \times 10^{-3}, \Gamma_{\gamma} = 1.9(3) \text{ eV}$$

R. Longland (UPC)

THERRAA

• Upper Limit Resonances

$$E_r^{\text{lab}} = 630 \text{ keV } J^{\pi} = 1^{-1}$$

$$\omega\gamma < 6 \times 10^{-3} \text{ neV}$$

$$\Gamma_{\gamma} = 3.0(15) \text{ eV},$$

$$\Gamma_n = 1.7(8) \times 10^3 \text{ eV},$$

$$\Gamma_{\alpha} < 1.7 \times 10^{-9} \text{ eV}$$

A Fictional Example

E (MeV)

Directly Measured Resonances

•
$$E_r^{\text{lab}} = 830 \text{ keV } J^{\pi} = 2^+$$

 $\Gamma_{\alpha} = 2.8 \times 10^{-5} \text{ eV}, \Gamma_{\gamma} = 3.0(15) \text{ eV},$
 $\Gamma_n = 2.5(17) \times 10^2 \text{ eV}$

Indirectly Measured Resonances ۲

►
$$E_r^{\text{lab}} = 226 \text{ keV } J^{\pi} = 1^{-}$$

 $S_{\alpha} = 1.9 \times 10^{-2}, \Gamma_{\gamma} = 0.72(18) \text{ eV}$
► $F^{\text{lab}} = 395 \text{ keV } J^{\pi} = 1^{-}$

$$S_{\alpha} = 2.8 \times 10^{-3}, \Gamma_{\gamma} = 1.9(3) \text{ eV}$$

R. Longland (UPC) THERRAA

R. Longland (UPC)

Upper Limit Resonances

•
$$E_r^{\text{lab}} = 630 \text{ keV } J^{\pi} = 1^{-1}$$

 $\omega \gamma < 6 \times 10^{-3} \text{ neV}$
 $\Gamma_{\gamma} = 3.0(15) \text{ eV},$
 $\Gamma_n = 1.7(8) \times 10^3 \text{ eV},$
 $\Gamma_{\alpha} < 1.7 \times 10^{-9} \text{ eV}$

Directly Measured Resonances

Narrow Resonances

- Thick targets
- Precise resonance energy
- Resonance strength $\omega\gamma$

$$\omega \gamma = rac{2arepsilon_{ ext{eff}}}{\lambda_r^2} rac{N_{ ext{max}}}{N_b B \eta W}$$

 Central Limit Theorem Multiplication of quantities leads to Lognormal uncertainties.

Wide Resonances

- Thin targets
- Total resonance width Γ
- Resonance strength $\omega\gamma$

Wide Resonances Note

Cross Section

$$\sigma \sim rac{\Gamma_a(E)\Gamma_b(E)}{(E_r - E)^2 + \Gamma(E)^2/4}$$

Indirectly Measured Resonances

Branching Ratios

²⁶XX

Indirect methods used mostly for low energy resonances

Energy uncertainty can be large

R. Longland (UPC)

THERRAA

Indirectly Measured Resonances

Example: ²²Ne(⁶Li,d)²⁶Mg

- (⁶Li,d) reaction populates states either side of α-particle threshold
- Large energy uncertainties
- Upon subtracting S_α, one obtains resonance energy with finite probability of negative energy (sub-threshold resonance)
- Central Limit Theorem Addition of quantities leads to Gaussian uncertainties.

U. Giesen et al., Nucl. Phys. A 561 (1993) 95 - 111

Upper Limit Resonances

 Random matrix theory predicts that dimensionless reduced widths (θ²_{sp}) should be distributed *locally* according to a Porter-Thomas distribution

$$P(\theta^{2}) = \begin{cases} \frac{c}{\sqrt{\theta^{2}}} e^{-\theta^{2}/(2\langle\theta^{2}\rangle)} & \text{if } \theta^{2} \leq \theta_{ul}^{2} \\ 0 & \text{if } \theta^{2} > \theta_{ul}^{2} \end{cases}$$

- To estimate $\langle \theta^2 \rangle$ for A = 20 40
 - 360 α -particle widths $\langle \theta_{\alpha}^2 \rangle = 0.010$
 - 1127 proton widths $\langle \theta_p^2 \rangle = 0.0045$
- Nuclear theory and experiments are required

Reaction Rate

Reaction Rate per Particle Pair

$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu}} \frac{1}{(kT)^{3/2}} \int_0^\infty E \sigma(E) e^{-E/kT} dE$$

E_r	$\omega\gamma$	<i>S</i> , <i>S'S''</i>	Γ_a	Γ_{UL}	$\langle \sigma v \rangle$
Gaussian	Lognormal	Lognormal	Lognormal	Porter-Thomas	Lognormal

Putting it all Together

22Ri (a,g)26XX								
2	l Zproj							
12	Ztarget							
0	! Zexitparticle (=0 when only 2 channels open)							
4.003	! Aproj							
21.991	! Atarget							
1.009	! Aexitparticle (=0 when only 2 channels open)							
0.0	! Jproj							
0.0	! Jtarget							
0.5	! Jexitparticle (=0 when only 2 channels open)							
10614.79	! projectile separation energy (keV)							
1 25	: exit particle separation energy (-0 when only 2 channels open)							
2	: Raulus parameter RV (Im) Gamma-ray channel number (=2 if ejectile is a g-ray; =3 otherwise)							

1.0	! Minimum energy for numerical integration (keV)							
5000	! Number of random samples (>5000 for better statistics)							
0	! =0 for rate output at all temperatures: =NT for rate output at selected temperatures							
************	***************************************							
Nonresonant Cont	ribution							
S(keVb) S'(b)	S''(b/keV) fracErr Cutoff Energy (keV)							
0.0 0.0	0.0 0.0 0.0							
0.0 0.0								
Reconant Contrib	ntion							
Note: G1 = entra	uczochannel. 62 z evit channel. 63 z spectator channel !! Ecm. Evf in (beV): wr. 6v in (eV) !!							
Note: if Er<0. t	heta/2=C2S*theta sp/2 must be entered instead of entrance channel partial width							
Ecm DEcm	wa Dwa J Gl DGl L1 G2 DG2 L2 G3 DG3 L3 Exf Int							
191.08 0.15	0 0 1 1.25e-23 0.50e-23 1 0.7 0.2 1 0 0 0 0 0							
334.31 0.1	0 0 1 1.20e-9 0.50e-9 1 1.9 0.3 1 0 0 0 0 0							
703.78 2.11	0 0 2 2.8e-5 0.5e-5 2 3.0 1.5 1 2.5e2 1.7e2 1 0 1							
826.04 0.19	0 0 4 3.78e-6 4.44e-7 4 3.0 1.5 1 1.47e3 8.0e1 2 0 1							
893.31 0.90	0 0 1 1.17e-4 2.0e-5 1 3.0 1.5 1 1.27e4 2.5e3 1 0 1							
1294.6 1.20	0 0 2 2.80e-6 0.1e-6 2 2.3 1.0 1 1.10e5 0.05e5 1 0 1							
Upper Limits of Resonances Note: enter partial width upper limit by chosing permanent value for DT where DT-sthete(2) for partiales and								
Note: enter part.	ial width upper limit by chosing non-zero value for P1, where P1= <theta"2> for particles and</theta"2>							
Ecm DEcm	Tr G1 DG1 L1 PT G2 DG2 L2 PT G3 DG3 L3 PT Evf Trt							
533.1 0.8	1 1.7e-9 0 1 0.01 3.0 1.5 1 0 1.7e3 0.8e3 1 0 0							
*************	***************************************							

Rate Distribution

- Distributions of rates are calculated
- Useful statistical parameters
 - Median
 - 1σ uncertainties (16th and 84th percentiles)
- Entire distribution of rates described by lognormal distribution

$$\mu = \ln(E[x]) - \frac{1}{2} \ln\left(1 + \frac{V[x]}{E[x]^2}\right), \quad \sigma = \sqrt{\ln\left(1 + \frac{V[x]}{E[x]^2}\right)}$$

- Lognormal distribution is an assumption
- Anderson-Darling statistic describes how well distribution is fit by the lognormal

$$t_{AD} = -n - \sum_{i=1}^{n} \frac{2i-1}{n} (\ln F(y_i) + \ln \left[1 - F(y_{n+1-i})\right])$$

• $t_{AD} < 40$ corresponds to good *visual* agreement

Stephens, M.A., J. Am. Stat. Assoc. 69 (1973) 74

i

Rate Presentation

T (GK)	Low rate	Median rate	High rate	lognormal μ	lognormal σ	A-D
0.100	2.47×10 ⁻²⁰	3.67×10 ⁻²⁰	5.48×10 ⁻²⁰	-4.475×10 ⁺⁰¹	4.06×10 ⁻⁰¹	5.29×10 ⁻⁰¹
0.110	7.28×10 ⁻¹⁹	1.08×10^{-18}	1.62×10^{-18}	-4.137×10 ⁺⁰¹	4.06×10^{-01}	5.29×10^{-01}
0.120	1.21×10 ⁻¹⁷	1.79×10 ⁻¹⁷	2.68×10 ⁻¹⁷	-3.856×10 ⁺⁰¹	4.06×10^{-01}	5.30×10^{-01}
0.130	1.29×10 ⁻¹⁶	1.91×10 ⁻¹⁶	2.86×10 ⁻¹⁶	-3.619×10 ⁺⁰¹	4.06×10^{-01}	5.30×10^{-01}
0.140	9.72×10 ⁻¹⁶	1.44×10 ⁻¹⁵	2.16×10 ⁻¹⁵	-3.417×10 ⁺⁰¹	4.06×10 ⁻⁰¹	5.30×10^{-01}
0.150	5.56×10 ⁻¹⁵	8.25×10 ⁻¹⁵	1.23×10 ⁻¹⁴	-3.243×10 ⁺⁰¹	4.06×10^{-01}	5.30×10^{-01}
0.160	2.54×10 ⁻¹⁴	3.77×10 ⁻¹⁴	5.64×10 ⁻¹⁴	-3.091×10 ⁺⁰¹	4.06×10 ⁻⁰¹	5.29×10 ⁻⁰¹
0.180	3.15×10 ⁻¹³	4.68×10 ⁻¹³	6.98×10 ⁻¹³	-2.839×10 ⁺⁰¹	4.06×10^{-01}	5.29×10 ⁻⁰¹
0.200	2.32×10 ⁻¹²	3.45×10 ⁻¹²	5.15×10 ⁻¹²	-2.639×10 ⁺⁰¹	4.06×10^{-01}	5.29×10 ⁻⁰¹
0.250	8.05×10 ⁻¹¹	1.19×10 ⁻¹⁰	1.78×10 ⁻¹⁰	-2.285×10 ⁺⁰¹	4.06×10^{-01}	5.28×10 ⁻⁰¹
0.300	8.14×10 ⁻¹⁰	1.21×10 ⁻⁰⁹	1.80×10 ⁻⁰⁹	-2.053×10 ⁺⁰¹	4.06×10^{-01}	5.23×10 ⁻⁰¹
0.350	4.11×10 ⁻⁰⁹	6.10×10 ⁻⁰⁹	9.08×10 ⁻⁰⁹	-1.891×10 ⁺⁰¹	4.05×10^{-01}	4.96×10^{-01}
0.400	1.37×10 ⁻⁰⁸	2.02×10 ⁻⁰⁸	3.00×10^{-08}	-1.772×10 ⁺⁰¹	4.00×10^{-01}	4.35×10^{-01}
0.450	3.55×10 ⁻⁰⁸	5.14×10^{-08}	7.58×10^{-08}	-1.678×10 ⁺⁰¹	3.88×10 ⁻⁰¹	4.13×10 ⁻⁰¹
0.500	7.85×10 ⁻⁰⁸	1.12×10 ⁻⁰⁷	1.63×10 ⁻⁰⁷	$-1.600 \times 10^{+01}$	3.74×10^{-01}	4.65×10^{-01}
0.600	2.89×10 ⁻⁰⁷	4.16×10 ⁻⁰⁷	6.16×10 ⁻⁰⁷	-1.468×10 ⁺⁰¹	3.89×10 ⁻⁰¹	$1.77 \times 10^{+00}$
0.700	8.29×10 ⁻⁰⁷	1.26×10 ⁻⁰⁶	2.06×10 ⁻⁰⁶	-1.355×10 ⁺⁰¹	4.74×10^{-01}	1.10×10 ⁺⁰¹
0.800	2.00×10 ⁻⁰⁶	3.29×10 ⁻⁰⁶	5.94×10 ⁻⁰⁶	-1.258×10 ⁺⁰¹	5.60×10^{-01}	$1.31 \times 10^{+01}$
0.900	4.26×10 ⁻⁰⁶	7.48×10 ⁻⁰⁶	1.44×10^{-05}	-1.176×10 ⁺⁰¹	6.18×10 ⁻⁰¹	$1.00 \times 10^{+01}$
1.000	8.21×10 ⁻⁰⁶	1.51×10^{-05}	$2.98{ imes}10^{-05}$	$-1.106 \times 10^{+01}$	6.48×10^{-01}	$7.46{ imes}10^{+00}$

(日) (四) (三) (三)

Conclusions

- Statistically meaningful uncertainties of thermonuclear nuclear reaction rates formulated
- Treatment of upper limits based on nuclear physics theory
- Flexible method allows for reasonable uncertainty assignments
 - Energies: Gaussian
 - Resonance Strengths: Lognormal
 - Partial Widths: Lognormal
 - **Upper Limits:** Porter-Thomas Distribution
- Final uncertainties can be presented as lognormal parameters
- Allows for full Monte Carlo sensitivity studies to be performed

See:

Longland, R. *et al.*, Nucl. Phys. A 841 (2010) 1–30 lliadis, C. *et al.*, Nucl. Phys. A 841 (2010) 31–250

- Supported by:
 - US Department of Energy under Contract No. DE-FG02-97ER41041.

Monte Carlo Rate Propagation for Experimentalists

R. Longland, C. Iliadis, A.E. Champagne, J.R. Newton, C. Ugalde, A. Coc, and R. Fitzgerald

> Universitat Politècnica de Catalunya Grup d'Astronomia i Astrofísica

> > November 25, 2011

