Primordial Nucleosynthesis

Alain Coc

(Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Orsay)

- Standard Big-Bang Nucleosynthesis of ⁴He, D, ³He, ⁷Li compared with observations
- □ The SBBN "lithium problem": nuclear aspects
- □ (⁶Li, ⁹Be, ^{10,11}B) and CNO in extended SBBN network
- Conclusions

The 12 reactions of standard BBN

Standard BBN

- No convection
- No diffusion
- > No mixing
- Known physics
- \succ <12 reactions

↓

Simple nucleosynthesis (?)

$n \leftrightarrow p$ weak reaction rates

 $\lambda_{n \leftrightarrow p} \propto \tau_n^{-1} \times$

 \sum (phase space)×(e distribution)×(v_e distribution) dE

+ small corrections

 $\lambda_{p \to n} = \lambda_{p + e^- + \bar{\nu}_e \to n} + \lambda_{p + \bar{\nu}_e \to n + e^+} + \lambda_{p + e^- \to n + \nu_e}$

$$\lambda_{n \to p} = \lambda_{n \to p + e^- + \overline{\nu}_e} + \lambda_{n + e^+ \to p + \overline{\nu}_e} + \lambda_{n + \nu_e \to p + e^-}$$

[Dicus et al. (1982), Lopez & Turner (1999)]

$$\lambda_{n \to pev} = C \int_{1}^{q} \frac{\varepsilon(\varepsilon - q)^{2} (\varepsilon^{2} - 1)^{1/2} d\varepsilon}{\left[1 + \exp(-\varepsilon z)\right] \left\{1 + \exp\left[(\varepsilon - q)z_{v}\right]\right\}} \xrightarrow{T \to 0} \frac{1}{\tau_{n}} = C \prod_{1}^{q} \varepsilon(\varepsilon - q)^{2} (\varepsilon^{2} - 1)^{1/2} d\varepsilon$$
$$(q = Q_{np}/m_{e}, \varepsilon = E_{e}/m_{e}, z = m_{e}/T_{\gamma}, z_{v} = m_{e}/T_{v})$$

 $\tau_n = \frac{885.7 \pm 0.8 \text{ s}}{881.5 \pm 1.5 \text{ s}} [PDG 2008] \text{ or } \tau_n = 878.5 \pm 0.7 \pm 0.3 [Serebrov et al. 2005]}{881.5 \pm 1.5 \text{ s}} [PDG 2011]$

- Weak rate change mostly affects n/p ratio at freeze out and hence ⁴He abundance
- Change in expansion rate gives similar effect (n/p freezeout when weak rate \approx expansion rate)

¹H(n, γ)D : theory versus experiments

Rate calculated from Effective Field theory with (theoretical) uncertainties of 4% [*Chen & Savage (1999)*] or 1% [*Rupak (2000)*] compared to experiments [*Arenhovel & Sanzone (1991) review*]

E_{CM} (MeV)

10 rates deduced from experimental data

Compilations and evaluations for/including BBN thermonuclear rates

- Smith, Kawano & Malaney 1999 (with uncertainties)
- > NACRE, Angulo et al. 1999 (7/10, tabulated rates and uncertainties)
- Nollett & Burles 2000 (no rates provided)
- Cyburt, Fields & Olive 2003 (revaluation of NACRE)
- Serpico et al. 2004 (rates and uncertainties provided)
- Descouvemont, Adahchour, Angulo, Coc & Vangioni-Flam 2004 [DAACV]
 - « R-Matrix » formalism: S-factors fits of data constrained by theory
 - Provide also reaction rate uncertainties
- Cyburt 2004 (rates provided, uncertainties calculated but not provided)
- > Update: TBD

Determination of primordial abundances

Primordial abundances :

- 1) Observe a set of primitive objects born when the Universe was young
 - ⁴He in H II (ionized H) regions of blue compact galaxies
 - ³He in H II regions of *our* Galaxy
 - **D** in remote cosmological clouds (i.e. at high redshift) on the line of sight of quasars
 - ⁷Li at the surface of low metallicity stars in the halo of our Galaxy
- 2) Extrapolate to zero metallicity : Fe/H, O/H, Si/H,.... $\rightarrow 0$

Comparison between observed and calculated abundances

Limits $(1-\sigma)$ obtained by Monte-Carlo from *Descouvemont et al.* (2004) reaction rate uncertainties.

Concordance (?) BBN, spectroscopy and CMB

- Ω_Bh² [WMAP: Spergel et al. (2003,2006)]
- **⁴He** [Olive & Skillman (2004)]
- **D** [Fields &Sarkar (2008)]
- ³He [Bania et al. (2002)]

• ⁷Li [*Ryan et al.* (1999,2000)] : difference of a factor of 2-3 between calculated (BBN+CMB) and observed (Spite plateau) primordial lithium

Sensitivity to thermonuclear reaction rates

At WMAP baryonic density

¹⁰ [Coc & Vangioni 2010]

		E ₀ (ΔE ₀ /2)			
Reaction	⁴ He	D	³ He	⁷ Li	(MeV @ 1GK)
$\tau_{n} \left(n \leftrightarrow p \right)$	0.73	0.42	0.15	0.40	
¹ H(n,γ) ² H	0	-0.20	0.08	1.33	0.025
² H(p,γ) ³ He	0	-0.32	0.37	0.57	0.11(0.11)
² H(d,n) ³ He	0	-0.54	0.21	0.69	0.12(0.12)
² H(d,p) ³ H	0	-0.46	-0.26	0.05	0.12(0.12)
³ H(d,n)⁴He	0	0	-0.01	-0.02	0.13(0.12)
³ H(α,γ) ⁷ Li	0	0	0	0.03	0.23(0.17)
³ He(n,p) ³ H	0	0.02	-0.17	-0.27	
³ He(d,p) ⁴ He	0	0.01	-0.75	-0.75	0.21(0.15)
³ He(α,γ) ⁷ Be	0	0	0	0.97	0.37(0.21)
⁷ Li(p,α)⁴He	0	0	0	-0.05	0.24(0.17)
⁷ Be(n,p) ⁷ Li	0	0	0	-0.71	

Influence of ${}^{1}H(n,\gamma)D$ reaction rate

(at WMAP/ACDM baryonic density)

 $\Omega_{\rm B}h^2 = 0.0224$

 $\Omega_{\rm B}h^2 = 0.0224$

The ${}^{1}H(n,\gamma){}^{2}H$ reaction $n+p\rightarrow d+\gamma$

 σ_{M1+E1} (mb) 0.3 Sensitivity = 1.330.2 E ~ 25 keV 0.1 New measurement of the M1 contribution [Ryezaveva et al. 2006] 0 σ_{M1} (mb) 0.3 by inelastic electron scattering off D0.2New precise $n(p,\gamma)d$ EFT cross section and rate calculation [Ando et al. 2006] 0.1 n(p,y)d 1 1 1 1 1 M1/(M1+E1) 0.8 0.6 0.4 0.2 10 ⁻² **10** ⁻¹ 1 10 10 -2 E_{CM} (MeV) 10 -1 10

Т9

1.1

1.075 1.05

1.025

0.975

0.95 0.925

0.9

And06 / Che99

The ³He(α , γ)⁷Be reaction

Sensitivity = 0.97

 $E_0(\Delta E_0/2) = 0.37(0.21) \text{ MeV}$

Systematic uncertainties : *prompt* versus *activation* measurements

New precise measurements (in particular at LUNA) :

Prompt [Brown et al. 2007, Confortola et al. 2007, Costantini et al. 2008]

 Activation [Nara Singh et al. 2005, Brown et al. 2007, Confortola et al. 2007, Gyürky et al. 2007]
Recoil [Di Leva et al. 2009]

Reanalysis of ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be rate [Cyburt & Davids 2008]: } S(0) = 0.580 \pm 0.043$ keV.b (13% higher than in DAACV04)

of solar fusion cross sections

The Li problem update

New ³He(α , γ)⁷Be and n(p, γ)d rates :

□ New abundance determinations :

- $\text{Li/H} = (1.58 \pm 0.35) \times 10^{-10}$ [Sbordone et al. 2010]
- 0.245 < Y_p < 0.267 [Aver, Olive & Skillman 2010]

 \Box ⁷Li difference of a factor of > 3 !

Monte-Carlo BBN versus observations

Using log-normal distribution *[Iliadis et al., 2010]* for the reaction rates from *DAACV*, *Ando et al. 2006*, *Leonard et al. 2006*, and *Cyburt & Davids 2008*.

	BBN cal	culations	Observations	
	Cyburt et al. 2008	Coc & Vangioni 2010		
⁴ He	0.2486±0.000 2	0.2476±0.000 4	0.245-0.267	×10 ⁰
D/H	2.49±0.17	2.68 ± 0.15	2.82 ± 0.20	×10 ⁻⁵
³ He/H	1.00 ± 0.07	1.05 ± 0.04	(0.9-1.3)	×10 ⁻⁵
⁷ Li/H	5.24 ^{+0.71} -0.62	5.14 ± 0.50	1.58 ± 0.35	×10 ⁻¹⁰

The lithium BBN problem

February 2012, 27 / 29 - Institut d'Astrophysique de Paris

Local Organizing Committee : Piercarlo Bonifacio, Fabio Iocco, Elisabeth Vangioni

A nuclear solution ???

New ⁷Be (i.e. ⁷Li) destruction channels

> The ⁷Be(d,p)⁸Be* \rightarrow 2 α reaction [*Coc et al. 2004*]

- Experiment at Louvain LN [Angulo et al. 2005] : no (integrated) cross-section enhancement
- Hypothetical resonance at E_R = 200±100 keV with I≤40 keV [Cyburt & Pospelov 2009]; corresponding to ≈16.7 MeV ⁹B level ?
- No resonance observed at Oak Ridge in D(⁷Be,d)⁷Be scattering [O'Malley et al. 2011]
- Measured E_x =16.8 MeV and Γ =81 keV [Scholl et al. 2011] \Rightarrow primordial effect on ⁷Li < 4% [Kirsebom & Davids 2011]
- Thermal population of excited states and non-thermal neutrons: negligible effects [Boyd, Brune, Fuller & Smith 2010]
- Unknown Resonances in ⁷Be + n, p, d, t, ³He and α? [Chakraborty, Fields & Olive 2011]

Other resonances ?

[Chakraborty, Fields & Olive (2011)]

Unknown Resonances in ⁷Be + n, p, d, t, ³He and α ?

⁸Be, ^{9,10,11}B, ^{10,11}C c.n. Unknown level

properties in ^{9,11}B and unknown levels in ¹⁰C

- •⁷Be(t,³He)⁷Li
- •⁷Be(t, α)⁶Li

•⁷Be(³He,2p) 2α

Spectroscopy Status of ¹⁰C, ⁹B & ¹⁰B

¹⁰C case

© F. Hammache

Proposed Tandem Experiment

Ongoine

Indirect study of ¹⁰C, ⁹B & ¹⁰B states via (³He,t), (³He,d) reactions on ¹⁰B and ⁹Be targets

First results from Tandem experiment

Preliminary!

Possible E_x =15.05 MeV (E_r =50 keV) level

- To be confirmed (next week?)
- Spin-parity ?
- Partial widths ?

CNO nucleosynthesis with an extended BBN network

> Applications of extended network:

- CNO seeds for first stars : CNO/H > 10⁻¹¹ [Cassisi & Castellani 1993] : CNO/H > 10⁻¹³ [Ekström et al. 2008]
- Standard CNO primordial abundances versus exotic production (e.g. "variation of fundamental constants")
- Future observations CNO ?
- Potential neutron sources for ⁷Be destruction by ⁷Be(n,p)⁷Li(p,α)⁴He in BBN (the lithium problem)? Unexpected effect (e.g. ⁷Li sensitivity to n(p,γ)d)
- > Extended network predictions : CNO/H $\approx 10^{-15}$ [*Iocco et al. 2007*]

CNO nucleosynthesis with an extended BBN network

- >Involves many (>400), $^{A}Z + n$, p, d, t, ^{3}He and α , reactions
- > Mostly unknown rates hence possibly high yield uncertainty

©Fields & Olive 2006

- Origin of the rates ???
 - Data bases of nuclear level properties
 - Estimates following *Fowler & Hoyle* 1964; Wagoner 1967 prescriptions

Comparison between Talys and experiments

[NACRE 1999]

T (GK)

10

10

CNO nucleosynthesis updated network

➢ 59 isotopes :

Z	A		
n	1		
Н	1-3		
He	3,4,6		
Li	6-9		
Be	7,9-12		
В	8,10-15		
С	9-16		
Ν	12-17		
0	13-20		
F	17-20		
Ne	18-23		
Na	20-23		

- > 33 decay rates [Audi et al. 2003]
- ➢ 391 reaction rates
 - ✓ Caughlan & Fowler 1988
 - ✓ Descouvemont et al. 2004 (DAACV)
 - ✓ Angulo et al. 1999 (NACRE I)
 - ✓ Xu et al., in preparation (NACRE II)
 - ✓ Iliadis et al. 2010
 - ✓ *Talys (271 rates)** within 3 orders of magnitude, at *T*=1 GK, compared with experiments!

 \checkmark

Most important reactions for CNO nucleosynthesis

Reaction	Fractional change in CNO abundance					Test rate	
Rate factor	0.001	0.01	0.1	10.	100.	1000.	reference
⁷ Li(d,γ) ⁹ Be	1.00	1.00	1.00	1.01	1.11	2.10	TALYS
⁷ Li(d,n)2α	1.66	1.65	1.55	0.28	0.06	0.02	Boy93
⁷ Li(t,n) ⁹ Be	0.99	0.99	0.99	1.10	2.14	11.7	Bru90
⁷ Li(t,2n)2α	1.00	1.00	1.00	0.99	0.91	0.53	MF89
⁸ Li(n,γ) ⁹ Li	1.00	1.00	1.00	1.01	1.06	1.62	Rau94
⁸ Li(t,n) ¹⁰ Be	1.00	1.00	1.00	1.00	1.02	1.23	TALYS
⁸ Li(α,γ) ¹² B	1.00	1.00	1.00	1.01	1.11	2.15	TALYS
⁸ Li(α,n) ¹¹ B	0.89	0.89	0.90	1.97	11.2	78.1	Miz01
⁹ Li(α,n) ¹² B	1.00	1.00	1.00	1.01	1.08	1.73	TALYS
¹⁰ Be(α,n) ¹³ C	1.00	1.00	1.00	1.00	1.03	1.28	TALYS
¹¹ B(n,γ) ¹² B	0.91	0.91	0.92	1.81	9.91	87.7	Rau94
¹¹ B(d,n) ¹² C	0.70	0.71	0.73	3.67	30.2	280.	TALYS
¹¹ B(d,p) ¹² B	0.99	0.99	0.99	1.08	1.83	9.33	TALYS
¹¹ B(t,n) ¹³ C	1.00	1.00	1.00	1.01	1.12	2.17	TALYS
¹¹ C(n,γ) ¹² C	1.00	1.00	1.00	1.01	1.08	1.75	Rau94
¹¹ C(d,p) ¹² C	0.99	0.99	0.99	1.05	1.55	5.67	TALYS
¹² C(t,α) ¹¹ B	1.00	1.00	1.00	1.00	0.97	0.75	TALYS
¹³ C(d,α) ¹¹ B	1.00	1.00	1.00	0.96	0.84	0.75	TALYS

Counter intuitive effects in BBN

 $\Omega_{\rm B}h^2$ =WMAP

The ¹H(n,γ)D reaction affects mostly ⁷Li

The ⁷Li(d,n)2⁴He reaction affects strongly the CNO but leaves ⁷Li (and other isotopes) unchanged!

Systematic sensitivity studies are important

Time (s)

Stability of results with re-evaluated reaction rates

Changes in ¹¹B(d,n) by ¹¹B(d,p) cancel each other

Independent re-evaluation of ⁸Li(α,n)¹¹B by *La Cognata & Del Zoppo 2011*

Changes CNO by 1.5%

Stability of results:

Number of atoms	[locco et al. 2007]	Initial Network	Updated Network
(¹² C+ ¹³ C)/H (×10 ⁻¹⁶)	5.5	4.43	6.75
(¹⁴ C+ ¹⁴ N)/H (×10 ⁻¹⁷)	5.0	3.98	6.76
¹⁶ O/H (×10 ⁻²⁰)	2.7	5.18	9.13
CNO/H (×10 ⁻¹⁶)	6.0	4.83	7.43

Nuclear uncertainties?

- Need a Monte-Carlo and statistically defined uncertainties: TBD
- Estimate from i) rate factor uncertainties <10 at T=1 GK, ii) sensitivity study \Rightarrow CNO factor uncertainty \approx 4

Main paths of BB nucleosynthesis

Main path for: > H, D, ³He, ⁴He, ⁷Li > ⁶Li > ⁹Be > ^{10,11}B > CNO (¹²C)

Conclusions

- SBBN calculations confirms good agreement for Ω_B values deduced from : CMB and SBBN (D and ⁴He),
- However disagreement between Li observations, SBBN and CMB :
 - Nuclear : most probably no but important to quantify needed depletion
 - Stellar depletion ?
 - Cosmology and particle physics ?

- Systematic sensitivity studies are important
- **SBBN** is now a parameter free model !
 - When looking back in time, *Standard* BBN is the last milestone of know physics : probe of the physics of the early Universe

**Coc, Goriely, Xu, Saimpert & Vangioni, 2011, ApJ in press* and http://www.astro.ulb.ac.be/pmwiki/Brusslib/BigbangTalys

Elisabeth Vangioni, Matthias Saimpert (Institut d'Astrophysique de Paris)

Pierre Descouvemont, Stéphane Goriely, Yi Xu (Université Libre de Bruxelles)