Electron transfer into metastable He-like ions: Non-statistical population mechanisms

Theo J.M. Zouros Dept. of Physics, University of Crete Heraklion, Crete, GREECE

2nd LIBRA meeting

3-electron spectrum from collisions of He-like beam

3-electron spectrum from collisions of He-like beam

Spin statistics for 2p capture to pure 1s2s ³S He-like Initial States

 $1s2s^{3}S + 2p$

 $1s2s^{1}S$

$$1s^{2}S$$

Obtaining pure metastable beam contributions

Strohschein et al PRA 2008

Obtaining pure metastable beam contributions

Strohschein et al PRA 2008

Yield corrections due to ⁴P_J metastability

Important Yield correction

Yield corrections due to ⁴P_J metastability

Second CEM Stage 6 Electrons Important Neg. High **Yield correction** Voltages Suppressed Gas Cell Faraday Cup Ion Beam First F^{7+} + He (a) 1.1 MeV/u Stage 1.0 -(single) 1s2p² ²D ;∕ 1s2s2p ⁴P 1s(2s2p ¹P) ²P₁ 0.5 1s(2s2p ³P) ²P 1s2s^{2 2}S 0.0

Yield corrections due to ⁴P_J metastability

Obtaining pure metastable beam contributions

Strohschein et al PRA 2008

Pauli exchange interaction

VOLUME 92, NUMBER 13

week ending 2 APRIL 2004

Evidence for Pauli Exchange Leading to Excited-State Enhancement in Electron Transfer

J. A. Tanis,¹ A. L. Landers,¹ D. J. Pole,¹ A. S. Alnaser,¹ S. Hossain,¹ and T. Kirchner²

¹Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008, USA ²Institut für Theoretische Physik, Technische Universität Clausthal, Leibnizstrasse 10, D-38768 Clausthal-Zellerfeld, Germany (Received 26 June 2003; published 2 April 2004)

An electron with antialigned spin can populate either the 1s, 2s or 2p levels, in the later case giving rise to the ${}^{2}P_{+}$ state

Pauli exchange interaction

An electron with a spin aligned with the spin of the 1s projectile:
a) can be captured into the 2p directly to form the ⁴P state

b) cannot be captured into the 1s (or 2s) due to Pauli exclusion.
So instead it interacts with the 1s (or 2s) via a Pauli Exchange Interaction so that one of them is transferred to the 2p forming additional ⁴P states PHYSICAL REVIEW A 77, 050701(R) (2008)

Selective enhancement of 1s2s2p ${}^{4}P_{J}$ metastable states populated by cascades in single-electron transfer collisions of F⁷⁺($1s^{2}/1s2s$ ${}^{3}S$) ions with He and H₂ targets

Phys. Rev. A Rapid Comm. 2008

Phys. Rev. A Rapid Comm. 2008

Final verdict

 Isoelectronic sequence study using He-like ions from Li⁺ to F⁺ in the 0.1-0.5 MeV/u where capture is strongest and effect seems to be the largest

- Isoelectronic sequence study using He-like ions from Li⁺ to F⁷⁺ in the 0.1-0.5 MeV/u where capture is strongest and effect seems to be the largest
- Ideally suited to the Demokritos tandem energy range of 0.8-4 MV

- Isoelectronic sequence study using He-like ions from Li⁺ to F⁺ in the 0.1-0.5 MeV/u where capture is strongest and effect seems to be the largest
- Ideally suited to the Demokritos tandem energy range of 0.8-4 MV
- Will use electron hemispherical spectrometer with position sensitive detector for high quality statistics

- Isoelectronic sequence study using He-like ions from Li⁺ to F⁺ in the 0.1-0.5 MeV/u where capture is strongest and effect seems to be the largest
- Ideally suited to the Demokritos tandem energy range of 0.8-4 MV
- Will use electron hemispherical spectrometer with position sensitive detector for high quality statistics
- Spectrometer and collision chamber already in house however need to be connected to beam line

- Isoelectronic sequence study using He-like ions from Li⁺ to F⁺ in the 0.1-0.5 MeV/u where capture is strongest and effect seems to be the largest
- Ideally suited to the Demokritos tandem energy range of 0.8-4 MV
- Will use electron hemispherical spectrometer with position sensitive detector for high quality statistics
- Spectrometer and collision chamber already in house however need to be connected to beam line
- High transmission beam line necessary for transporting ground state He-like beam from terminal to experiment

- Isoelectronic sequence study using He-like ions from Li⁺ to F⁺ in the 0.1-0.5 MeV/u where capture is strongest and effect seems to be the largest
- Ideally suited to the Demokritos tandem energy range of 0.8-4 MV
- Will use electron hemispherical spectrometer with position sensitive detector for high quality statistics
- Spectrometer and collision chamber already in house however need to be connected to beam line
- High transmission beam line necessary for transporting ground state He-like beam from terminal to experiment
- Needed: terminal gas stripper to produce pure ground state He-like beams – otherwise need to calculate ground state contribution

The end – thank you for listening

References

Non-statistical results

- Tanis et al. PRL 92 (2004) 133201
- Zouros et al. PRA 77 (2008) 050701
- Strohschein et al. PRA 77 (2008) 022706

Production of pure ground state He-like ion beams
Benis & Zouros, PRA 65 (2002) 064701

Contact: tzouros@physics.uoc.gr